EFI - Training Resources: Publications

5 US Patents

1.
US2019/0144798A1, Cleaning composition. The Procter & Gamble Company, Cincinnati, OH. May 16, 2019.
2.
US2019/0144801, Cleaning composition. The Procter & Gamble Company, Cincinnati, OH. May 16, 2019.
3.
US2019/0194599A1, Methods for generating a bacterial hemoglobin library and uses thereof. Zymergen, Inc., Emeryville, CA. June 27, 2019.
4.
US2019/0209625A1, Engineering therapeutic probiotic system and method. National University of Singapore, Singapore. July 11, 2019.
5.
US2019/0225663A1, Discovery of cationic nonribosomal peptides as gram-negative antibiotics through global genome mining. Hong Kong University of Science and Technology, China Ocean Mineral Resources R&D Association, Hong Kong CN. July 25, 2019.

339 Journal Articles

1.
Wichelecki, D. J., Graff, D. C., Al-Obaidi, N., Almo, S. C., Gerlt, J. A., Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily. Biochemistry, 2014. 53(25): p. 4087-9. http://doi.org/10.1021/bi500683x
2.
Wichelecki, D. J., Balthazor, B. M., Chau, A. C., Vetting, M. W., Fedorov, A. A., Fedorov, E. V., Lukk, T., Patskovsky, Y. V., Stead, M. B., Hillerich, B. S., Seidel, R. D., Almo, S. C., Gerlt, J. A., Discovery of function in the enolase superfamily: D-mannonate and d-gluconate dehydratases in the D-mannonate dehydratase subgroup. Biochemistry, 2014. 53(16): p. 2722-31. http://doi.org/10.1021/bi500264p
3.
Dunbar, K. L., Chekan, J. R., Cox, C. L., Burkhart, B. J., Nair, S. K., Mitchell, D. A., Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol, 2014. 10(10): p. 823-9. http://doi.org/10.1038/nchembio.1608
4.
Rao, G., O'Dowd, B., Li, J., Wang, K., Oldfield, E., IspH–RPS1 and IspH–UbiA:“Rosetta stone” proteins. Chemical science, 2015. 6(12): p. 6813-6822. http://doi.org/10.1039/C5SC02600H
5.
Petronikolou, N., Nair, S. K., Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel. Chem Biol, 2015. 22(11): p. 1480-1490. http://doi.org/10.1016/j.chembiol.2015.09.011
6.
Cox, C. L., Doroghazi, J. R., Mitchell, D. A., The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics, 2015. 16(1): p. 778. http://doi.org/10.1186/s12864-015-2008-0
7.
Roche, D., Brackenridge, D., McGuffin, L., Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods. International journal of molecular sciences, 2015. 16(12): p. 29829-29842. http://doi.org/10.3390/ijms161226202
8.
Huang, H., Carter, M. S., Vetting, M. W., Al-Obaidi, N., Patskovsky, Y., Almo, S. C., Gerlt, J. A., A General Strategy for the Discovery of Metabolic Pathways: d-Threitol, l-Threitol, and Erythritol Utilization in Mycobacterium smegmatis. J Am Chem Soc, 2015. 137(46): p. 14570-3. http://doi.org/10.1021/jacs.5b08968
9.
Wichelecki, D. J., Vetting, M. W., Chou, L., Al-Obaidi, N., Bouvier, J. T., Almo, S. C., Gerlt, J. A., ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. J Biol Chem, 2015. 290(48): p. 28963-76. http://doi.org/10.1074/jbc.M115.686857
10.
San Francisco, B., Zhang, X., Whalen, K., Gerlt, J., A Novel Pathway for Bacterial Ethanolamine Metabolism. The FASEB Journal, 2015. 29(1_supplement): p. 573.45.
11.
Vetting, M. W., Al-Obaidi, N., Zhao, S., San Francisco, B., Kim, J., Wichelecki, D. J., Bouvier, J. T., Solbiati, J. O., Vu, H., Zhang, X., Rodionov, D. A., Love, J. D., Hillerich, B. S., Seidel, R. D., Quinn, R. J., Osterman, A. L., Cronan, J. E., Jacobson, M. P., Gerlt, J. A., Almo, S. C., Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry, 2015. 54(3): p. 909-31. http://doi.org/10.1021/bi501388y
12.
Zhang, X., Kumar, R., Vetting, M. W., Zhao, S., Jacobson, M. P., Almo, S. C., Gerlt, J. A., A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily. J Am Chem Soc, 2015. 137(4): p. 1388-91. http://doi.org/10.1021/ja5103986
13.
Anders, K., Essen, L., The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful. Current Opinion in Structural Biology, 2015. 35: p. 7-16. http://doi.org/10.1016/j.sbi.2015.07.005
14.
Colin, P. Y., Kintses, B., Gielen, F., Miton, C. M., Fischer, G., Mohamed, M. F., Hyvonen, M., Morgavi, D. P., Janssen, D. B., Hollfelder, F., Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun, 2015. 6: p. 10008. http://doi.org/10.1038/ncomms10008
15.
Burkhart, B. J., Hudson, G. A., Dunbar, K. L., Mitchell, D. A., A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol, 2015. 11(8): p. 564-70. http://doi.org/10.1038/nchembio.1856
16.
Latham, J. A., Iavarone, A. T., Barr, I., Juthani, P. V., Klinman, J. P., PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem, 2015. 290(20): p. 12908-18. http://doi.org/10.1074/jbc.M115.646521
17.
Celis, A. I., DuBois, J. L., Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys, 2015. 574: p. 3-17. http://doi.org/10.1016/j.abb.2015.03.004
18.
Liu, F., Geng, J., Gumpper, R. H., Barman, A., Davis, I., Ozarowski, A., Hamelberg, D., Liu, A., An Iron Reservoir to the Catalytic Metal: THE RUBREDOXIN IRON IN AN EXTRADIOL DIOXYGENASE. J Biol Chem, 2015. 290(25): p. 15621-34. http://doi.org/10.1074/jbc.M115.650259
19.
Desai, J., Liu, Y. L., Wei, H., Liu, W., Ko, T. P., Guo, R. T., Oldfield, E., Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase. ChemMedChem, 2016. 11(17): p. 1915-23. http://doi.org/10.1002/cmdc.201600311
20.
Molloy, E. M, Tietz, J. I, Blair, P. M, Mitchell, D. A, Biological characterization of the hygrobafilomycin antibiotic JBIR-100 and bioinformatic insights into the hygrolide family of natural products. Bioorganic & medicinal chemistry, 2016. 24(24): p. 6276-6290. http://doi.org/10.1016/j.bmc.2016.05.021
21.
Ghodge, S. V., Biernat, K. A., Bassett, S. J., Redinbo, M. R., Bowers, A. A., Post-translational Claisen Condensation and Decarboxylation en Route to the Bicyclic Core of Pantocin A. J Am Chem Soc, 2016. 138(17): p. 5487-90. http://doi.org/10.1021/jacs.5b13529
22.
Plach, M. G, Reisinger, B., Sterner, R., Merkl, R., Long-term persistence of bi-functionality contributes to the robustness of microbial life through exaptation. PLoS genetics, 2016. 12(1): p. e1005836. http://doi.org/10.1371/journal.pgen.1005836
23.
Thotsaporn, K., Tinikul, R., Maenpuen, S., Phonbuppha, J., Watthaisong, P., Chenprakhon, P., Chaiyen, P., Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. Journal of Molecular Catalysis B: Enzymatic, 2016. 134: p. 353-366. http://doi.org/10.1016/j.molcatb.2016.09.003
24.
Kumar, G., Johnson, J. L, Frantom, P. A, Improving functional annotation in the DRE-TIM metallolyase superfamily through identification of active site fingerprints. Biochemistry, 2016. 55(12): p. 1863-1872. http://doi.org/10.1021/acs.biochem.5b01193
25.
Davey, L., Halperin, S. A., Lee, S. F., Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol, 2016. 24(11): p. 902-915. http://doi.org/10.1016/j.tim.2016.06.010
26.
Ding, W., Li, Q., Jia, Y., Ji, X., Qianzhu, H., Zhang, Q., Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem, 2016. 17(13): p. 1191-7. http://doi.org/10.1002/cbic.201600107
27.
Ahmed, F H., Mohamed, A E., Carr, P. D, Lee, B. M, Condic‐Jurkic, K., O'Mara, M. L, Jackson, C. J, Rv2074 is a novel F420H2‐dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Science, 2016. 25(9): p. 1692-1709. http://doi.org/10.1002/pro.2975
28.
Ji, X., Liu, W. Q., Yuan, S., Yin, Y., Ding, W., Zhang, Q., Mechanistic study of the radical SAM-dependent amine dehydrogenation reactions. Chem Commun (Camb), 2016. 52(69): p. 10555-8. http://doi.org/10.1039/c6cc05661j
29.
Chekan, J. R., Koos, J. D., Zong, C., Maksimov, M. O., Link, A. J., Nair, S. K., Structure of the Lasso Peptide Isopeptidase Identifies a Topology for Processing Threaded Substrates. J Am Chem Soc, 2016. 138(50): p. 16452-16458. http://doi.org/10.1021/jacs.6b10389
30.
Atkinson, J. T, Campbell, I., Bennett, G. N, Silberg, J. J, Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry, 2016. 55(51): p. 7047-7064. http://doi.org/10.1021/acs.biochem.6b00831
31.
Hao, Y., Pierce, E., Roe, D., Morita, M., McIntosh, J. A., Agarwal, V., Cheatham, T. E. 3rd, Schmidt, E. W., Nair, S. K., Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. Proc Natl Acad Sci U S A, 2016. 113(49): p. 14037-14042. http://doi.org/10.1073/pnas.1609869113
32.
Li, D., Moorman, R., Vanhercke, T., Petrie, J., Singh, S., Jackson, C. J., Classification and substrate head-group specificity of membrane fatty acid desaturases. Comput Struct Biotechnol J, 2016. 14: p. 341-349. http://doi.org/10.1016/j.csbj.2016.08.003
33.
Rao, G., Oldfield, E., Structure and Function of Four Classes of the 4Fe-4S Protein, IspH. Biochemistry, 2016. 55(29): p. 4119-29. http://doi.org/10.1021/acs.biochem.6b00474
34.
Baier, F., Copp, J. N., Tokuriki, N., Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships. Biochemistry, 2016. 55(46): p. 6375-6388. http://doi.org/10.1021/acs.biochem.6b00723
35.
Ji, X., Li, Y., Xie, L., Lu, H., Ding, W., Zhang, Q., Expanding radical SAM chemistry by using radical addition reactions and SAM analogues. Angewandte Chemie International Edition, 2016. 55(39): p. 11845-11848. http://doi.org/10.1002/anie.201605917
36.
Zallot, R., Harrison, K. J., Kolaczkowski, B., de Crecy-Lagard, V., Functional Annotations of Paralogs: A Blessing and a Curse. Life (Basel), 2016. 6(3): p. 39. http://doi.org/10.3390/life6030039
37.
Zhang, X., Carter, M. S, Vetting, M. W, San Francisco, B., Zhao, S., Al-Obaidi, N. F, Solbiati, J. O, Thiaville, J. J, de Crécy-Lagard, V., Jacobson, M. P, Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proceedings of the National Academy of Sciences, 2016. 113(29): p. E4161-E4169. http://doi.org/10.1073/pnas.1605546113
38.
I Tietz, J., Mitchell, A, Using genomics for natural product structure elucidation. Current topics in medicinal chemistry, 2016. 16(15): p. 1645-1694. http://doi.org/10.2174/1568026616666151012111439
39.
Bhandari, D. M., Fedoseyenko, D., Begley, T. P., Tryptophan Lyase (NosL): A Cornucopia of 5'-Deoxyadenosyl Radical Mediated Transformations. J Am Chem Soc, 2016. 138(50): p. 16184-16187. http://doi.org/10.1021/jacs.6b06139
40.
Prunetti, L., El Yacoubi, B., Schiavon, C. R, Kirkpatrick, E., Huang, L., Bailly, M., El Badawi-Sidhu, M., Harrison, K., Gregory 3rd, J. F, Fiehn, O., Evidence that COG0325 proteins are involved in PLP homeostasis. Microbiology, 2016. 162(4): p. 694-706. http://doi.org/10.1099/mic.0.000255
41.
Gerlt, J. A, Tools and strategies for discovering novel enzymes and metabolic pathways. Perspectives in science, 2016. 9: p. 24-32. http://doi.org/10.1016/j.pisc.2016.07.001
42.
Colabroy, K. L., Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. Biochim Biophys Acta, 2016. 1864(6): p. 724-737. http://doi.org/10.1016/j.bbapap.2016.03.001
43.
Maxson, T., Tietz, J. I., Hudson, G. A., Guo, X. R., Tai, H. C., Mitchell, D. A., Targeting Reactive Carbonyls for Identifying Natural Products and Their Biosynthetic Origins. J Am Chem Soc, 2016. 138(46): p. 15157-15166. http://doi.org/10.1021/jacs.6b06848
44.
Dassama, L. M., Kenney, G. E., Ro, S. Y., Zielazinski, E. L., Rosenzweig, A. C., Methanobactin transport machinery. Proc Natl Acad Sci U S A, 2016. 113(46): p. 13027-13032. http://doi.org/10.1073/pnas.1603578113
45.
Machovina, M. M., Usselman, R. J., DuBois, J. L., Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J Biol Chem, 2016. 291(34): p. 17816-28. http://doi.org/10.1074/jbc.M116.730051
46.
Chowdhary, J., Loffler, F. E., Smith, J. C., Community detection in sequence similarity networks based on attribute clustering. PLoS One, 2017. 12(7): p. e0178650. http://doi.org/10.1371/journal.pone.0178650
47.
Kandlinger, F., Plach, M. G., Merkl, R., AGeNNT: annotation of enzyme families by means of refined neighborhood networks. BMC Bioinformatics, 2017. 18(1): p. 274. http://doi.org/10.1186/s12859-017-1689-6
48.
McFarland, B. J, Online Tools for Teaching Large Laboratory Courses: How the GENI Website Facilitates Authentic Research. Teaching and the Internet: The Application of Web Apps, Networking, and Online Tech for Chemistry Education, 2017. http://doi.org/10.1021/bk-2017-1270.ch008
49.
Vazquez, R., Domenech, M., Iglesias-Bexiga, M., Menendez, M., Garcia, P., Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep, 2017. 7(1): p. 16506. http://doi.org/10.1038/s41598-017-16736-0
50.
Hopkins, D. H, Fraser, N. J, Mabbitt, P. D, Carr, P. D, Oakeshott, J. G, Jackson, C. J, Structure of an insecticide sequestering carboxylesterase from the disease vector Culex quinquefasciatus: what makes an enzyme a good insecticide sponge?. Biochemistry, 2017. 56(41): p. 5512-5525. http://doi.org/10.1021/acs.biochem.7b00774
51.
Schwalen, C. J., Feng, X., Liu, W., O. Dowd B, , Ko, T. P., Shin, C. J., Guo, R. T., Mitchell, D. A., Oldfield, E., Head-to-Head Prenyl Synthases in Pathogenic Bacteria. Chembiochem, 2017. 18(11): p. 985-991. http://doi.org/10.1002/cbic.201700099
52.
Yuan, H., Zhang, J., Cai, Y., Wu, S., Yang, K., Chan, H. C. S., Huang, W., Jin, W. B., Li, Y., Yin, Y., Igarashi, Y., Yuan, S., Zhou, J., Tang, G. L., GyrI-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection. Nat Commun, 2017. 8(1): p. 1485. http://doi.org/10.1038/s41467-017-01508-1
53.
Holliday, G. L, Brown, S. D, Akiva, E., Mischel, D., Hicks, M. A, Morris, J. H, Huang, C. C, Meng, E. C, Pegg, S. C., Ferrin, T. E, Biocuration in the structure–function linkage database: the anatomy of a superfamily. Database, 2017. 2017:. http://doi.org/10.1093/database/bax045
54.
Wang, H., Chen, X., Li, C., Liu, Y., Yang, F., Wang, C., Sequence-based prediction of cysteine reactivity using machine learning. Biochemistry, 2017. 57(4): p. 451-460. http://doi.org/10.1021/acs.biochem.7b00897
55.
Lohans, C. T, Wang, D. Y, Wang, J., Hamed, R. B, Schofield, C. J, Crotonases: nature’s exceedingly convertible catalysts. ACS Catalysis, 2017. 7(10): p. 6587-6599. http://doi.org/10.1021/acscatal.7b01699
56.
Orth, C., Niemann, N., Hennig, L., Essen, L., Batschauer, A., Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. Journal of Biological Chemistry, 2017. 292(31): p. 12906-12920. http://doi.org/10.1074/jbc.M117.788869
57.
Ahmed, M. N., Reyna-Gonzalez, E., Schmid, B., Wiebach, V., Sussmuth, R. D., Dittmann, E., Fewer, D. P., Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors. ACS Chem Biol, 2017. 12(6): p. 1538-1546. http://doi.org/10.1021/acschembio.7b00124
58.
Holliday, G. L, Davidson, R., Akiva, E., Babbitt, P. C, Evaluating functional annotations of enzymes using the gene ontology. The Gene Ontology Handbook, 2017. http://doi.org/10.1007/978-1-4939-3743-1_9
59.
Ding, W., Ji, W., Wu, Y., Wu, R., Liu, W. Q., Mo, T., Zhao, J., Ma, X., Zhang, W., Xu, P., Deng, Z., Tang, B., Yu, Y., Zhang, Q., Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ. Nat Commun, 2017. 8(1): p. 437. http://doi.org/10.1038/s41467-017-00439-1
60.
Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., Xuan, Y. H., Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters. Front Plant Sci, 2017. 8: p. 2178. http://doi.org/10.3389/fpls.2017.02178
61.
Wang, M., Moynié, L., Harrison, P. J, Kelly, V., Piper, A., Naismith, J. H, Campopiano, D. J, Using the pimeloyl-CoA synthetase adenylation fold to synthesize fatty acid thioesters. Nature chemical biology, 2017. 13(6): p. 660. http://doi.org/10.1038/nchembio.2361
62.
Bearne, S. L, The interdigitating loop of the enolase superfamily as a specificity binding determinant or ‘flying buttress’. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2017. 1865(5): p. 619-630. http://doi.org/10.1016/j.bbapap.2017.02.006
63.
Essen, L. O., Franz, S., Banerjee, A., Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. J Plant Physiol, 2017. 217: p. 27-37. http://doi.org/10.1016/j.jplph.2017.07.005
64.
Jia, B., Jia, X., Hyun Kim, K., Ji Pu, Z., Kang, M. S., Ok Jeon, C., Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway. Sci Rep, 2017. 7: p. 43489. http://doi.org/10.1038/srep43489
65.
Zallot, R., Yuan, Y., de Crécy-Lagard, V., The Escherichia coli COG1738 member YhhQ is involved in 7-cyanodeazaguanine (preQ0) transport. Biomolecules, 2017. 7(1): p. 12. http://doi.org/10.3390/biom7010012
66.
Plach, M. G., Semmelmann, F., Busch, F., Busch, M., Heizinger, L., Wysocki, V. H., Merkl, R., Sterner, R., Evolutionary diversification of protein-protein interactions by interface add-ons. Proc Natl Acad Sci U S A, 2017. 114(40): p. E8333-E8342. http://doi.org/10.1073/pnas.1707335114
67.
Glasner, M. E., Finding enzymes in the gut metagenome. Science, 2017. 355(6325): p. 577-578. http://doi.org/10.1126/science.aam7446
68.
Grim, K. P., San Francisco, B., Radin, J. N., Brazel, E. B., Kelliher, J. L., Parraga Solorzano, P. K., Kim, P. C., McDevitt, C. A., Kehl-Fie, T. E., The Metallophore Staphylopine Enables Staphylococcus aureus To Compete with the Host for Zinc and Overcome Nutritional Immunity. mBio, 2017. 8(5): p. e01281-17. http://doi.org/10.1128/mBio.01281-17
69.
Dong, S. H., Frane, N. D., Christensen, Q. H., Greenberg, E. P., Nagarajan, R., Nair, S. K., Molecular basis for the substrate specificity of quorum signal synthases. Proc Natl Acad Sci U S A, 2017. 114(34): p. 9092-9097. http://doi.org/10.1073/pnas.1705400114
70.
Jia, B., Jia, X., Kim, K. H., Jeon, C. O., Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochim Biophys Acta Gen Subj, 2017. 1861(2): p. 323-334. http://doi.org/10.1016/j.bbagen.2016.12.001
71.
Jia, B., Tang, K., Chun, B. H., Jeon, C. O., Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa. Biochim Biophys Acta Gen Subj, 2017. 1861(11 Pt A): p. 2922-2933. http://doi.org/10.1016/j.bbagen.2017.08.019
72.
Wagner, D. T., Zeng, J., Bailey, C. B., Gay, D. C., Yuan, F., Manion, H. R., Keatinge-Clay, A. T., Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure, 2017. 25(7): p. 1045-1055 e2. http://doi.org/10.1016/j.str.2017.05.011
73.
Estrada, P., Manandhar, M., Dong, S. H., Deveryshetty, J., Agarwal, V., Cronan, J. E., Nair, S. K., The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol, 2017. 13(6): p. 668-674. http://doi.org/10.1038/nchembio.2359
74.
Pimviriyakul, P., Thotsaporn, K., Sucharitakul, J., Chaiyen, P., Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA. J Biol Chem, 2017. 292(12): p. 4818-4832. http://doi.org/10.1074/jbc.M116.774448
75.
Liao, C., Seebeck, F. P., Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Chembiochem, 2017. 18(21): p. 2115-2118. http://doi.org/10.1002/cbic.201700354
76.
Tietz, J. I., Schwalen, C. J., Patel, P. S., Maxson, T., Blair, P. M., Tai, H. C., Zakai, U. I., Mitchell, D. A., A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol, 2017. 13(5): p. 470-478. http://doi.org/10.1038/nchembio.2319
77.
Erb, T. J., Jones, P. R., Bar-Even, A., Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol, 2017. 37: p. 56-62. http://doi.org/10.1016/j.cbpa.2016.12.023
78.
Repka, L. M., Chekan, J. R., Nair, S. K., van der Donk, W. A., Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev, 2017. 117(8): p. 5457-5520. http://doi.org/10.1021/acs.chemrev.6b00591
79.
Levin, B. J., Huang, Y. Y., Peck, S. C., Wei, Y., Martinez-Del Campo, A., Marks, J. A., Franzosa, E. A., Huttenhower, C., Balskus, E. P., A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science, 2017. 355(6325): p. eaai8386. http://doi.org/10.1126/science.aai8386
80.
Rudolf, J. D., Chang, C. Y., Ma, M., Shen, B., Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep, 2017. 34(9): p. 1141-1172. http://doi.org/10.1039/c7np00034k
81.
Giessen, T. W., Silver, P. A., Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat Microbiol, 2017. 2(6): p. 17029. http://doi.org/10.1038/nmicrobiol.2017.29
82.
Ney, B., Ahmed, F H., Carere, C. R, Biswas, A., Warden, A. C, Morales, S. E, Pandey, G., Watt, S. J, Oakeshott, J. G, Taylor, M. C, The methanogenic redox cofactor F 420 is widely synthesized by aerobic soil bacteria. The ISME journal, 2017. 11(1): p. 125. http://doi.org/10.1038/ismej.2016.100
83.
Ortega, M. A., Cogan, D. P., Mukherjee, S., Garg, N., Li, B., Thibodeaux, G. N., Maffioli, S. I., Donadio, S., Sosio, M., Escano, J., Smith, L., Nair, S. K., van der Donk, W. A., Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis. ACS Chem Biol, 2017. 12(2): p. 548-557. http://doi.org/10.1021/acschembio.6b01031
84.
Benjdia, A., Guillot, A., Ruffie, P., Leprince, J., Berteau, O., Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat Chem, 2017. 9(7): p. 698-707. http://doi.org/10.1038/nchem.2714
85.
Cogan, D. P, Hudson, G. A, Zhang, Z., Pogorelov, T. V, van der Donk, W. A, Mitchell, D. A, Nair, S. K, Structural insights into enzymatic [4+ 2] aza-cycloaddition in thiopeptide antibiotic biosynthesis. Proceedings of the National Academy of Sciences, 2017. 114(49): p. 12928-12933. http://doi.org/10.1073/pnas.1716035114
86.
Gerlt, J. A., Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry, 2017. 56(33): p. 4293-4308. http://doi.org/10.1021/acs.biochem.7b00614
87.
Hetrick, K. J., van der Donk, W. A., Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol, 2017. 38: p. 36-44. http://doi.org/10.1016/j.cbpa.2017.02.005
88.
Blin, K., Wolf, T., Chevrette, M. G., Lu, X., Schwalen, C. J., Kautsar, S. A., Suarez Duran, H. G., de Los Santos, E. L. C., Kim, H. U., Nave, M., Dickschat, J. S., Mitchell, D. A., Shelest, E., Breitling, R., Takano, E., Lee, S. Y., Weber, T., Medema, M. H., antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res, 2017. 45(W1): p. W36-W41. http://doi.org/10.1093/nar/gkx319
89.
Koppel, N., Maini Rekdal, V., Balskus, E. P., Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017. 356(6344): p. eaag2770. http://doi.org/10.1126/science.aag2770
90.
Welsh, M. A., Taguchi, A., Schaefer, K., Van Tyne, D., Lebreton, F., Gilmore, M. S., Kahne, D., Walker, S., Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J Am Chem Soc, 2017. 139(49): p. 17727-17730. http://doi.org/10.1021/jacs.7b10170
91.
Haase, E. M., Kou, Y., Sabharwal, A., Liao, Y. C., Lan, T., Lindqvist, C., Scannapieco, F. A., Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol, 2017. 17(1): p. 94. http://doi.org/10.1186/s12866-017-1005-7
92.
Pornsuwan, S., Maenpuen, S., Kamutira, P., Watthaisong, P., Thotsaporn, K., Tongsook, C., Juttulapa, M., Nijvipakul, S., Chaiyen, P., 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover. PLoS One, 2017. 12(2): p. e0171135. http://doi.org/10.1371/journal.pone.0171135
93.
Zhong, G., Zhao, Q., Zhang, Q., Liu, W., 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of gamma-glutamyltranspeptidase homolog for C-C bond cleavage. Nat Commun, 2017. 8: p. 16109. http://doi.org/10.1038/ncomms16109
94.
Macaisne, N., Liu, F., Scornet, D., Peters, A. F., Lipinska, A., Perrineau, M. M., Henry, A., Strittmatter, M., Coelho, S. M., Cock, J. M., The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes. Development, 2017. 144(3): p. 409-418. http://doi.org/10.1242/dev.141523
95.
Stojkovic, V., Chu, T., Therizols, G., Weinberg, D. E., Fujimori, D. G., miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes. J Am Chem Soc, 2018. 140(23): p. 7135-7143. http://doi.org/10.1021/jacs.8b02618
96.
Yuenyao, A., Petchyam, N., Kamonsutthipaijit, N., Chaiyen, P., Pakotiprapha, D., Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands. Arch Biochem Biophys, 2018. 653: p. 24-38. http://doi.org/10.1016/j.abb.2018.06.010
97.
Viana, A. T., Caetano, T., Covas, C., Santos, T., Mendo, S., Environmental superbugs: The case study of Pedobacter spp. Environ Pollut, 2018. 241: p. 1048-1055. http://doi.org/10.1016/j.envpol.2018.06.047
98.
Roy, R., Samanta, S., Patra, S., Mahato, N. K., Saha, R. P., In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics, 2018. 10(10): p. 1476-1500. http://doi.org/10.1039/c8mt00082d
99.
Chakravarti, A., Selvadurai, K., Shahoei, R., Lee, H., Fatma, S., Tajkhorshid, E., Huang, R. H., Reconstitution and substrate specificity for isopentenyl pyrophosphate of the antiviral radical SAM enzyme viperin. J Biol Chem, 2018. 293(36): p. 14122-14133. http://doi.org/10.1074/jbc.RA118.003998
100.
Jia, B., Pu, Z. J., Tang, K., Jia, X., Kim, K. H., Liu, X., Jeon, C. O., Catalytic, Computational, and Evolutionary Analysis of the d-Lactate Dehydrogenases Responsible for d-Lactic Acid Production in Lactic Acid Bacteria. J Agric Food Chem, 2018. 66(31): p. 8371-8381. http://doi.org/10.1021/acs.jafc.8b02454
101.
Mallette, E., Kimber, M. S., Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis. Biochemistry, 2018. 57(26): p. 3780-3789. http://doi.org/10.1021/acs.biochem.8b00464
102.
Kim, K. H., Jia, X., Jia, B., Jeon, C. O., Identification and Characterization of l-Malate Dehydrogenases and the l-Lactate-Biosynthetic Pathway in Leuconostoc mesenteroides ATCC 8293. J Agric Food Chem, 2018. 66(30): p. 8086-8093. http://doi.org/10.1021/acs.jafc.8b02649
103.
Vogt, M. S., Volpel, S. L., Albers, S. V., Essen, L. O., Banerjee, A., Crystal structure of an Lrs14-like archaeal biofilm regulator from Sulfolobus acidocaldarius. Acta Crystallogr D Struct Biol, 2018. 74(Pt 11): p. 1105-1114. http://doi.org/10.1107/S2059798318014146
104.
An, L., Cogan, D. P., Navo, C. D., Jimenez-Oses, G., Nair, S. K., van der Donk, W. A., Substrate-assisted enzymatic formation of lysinoalanine in duramycin. Nat Chem Biol, 2018. 14(10): p. 928-933. http://doi.org/10.1038/s41589-018-0122-4
105.
Ji, X., Mandalapu, D., Cheng, J., Ding, W., Zhang, Q., Expanding the Chemistry of the Class C Radical SAM Methyltransferase NosN by Using an Allyl Analogue of SAM. Angewandte Chemie International Edition, 2018. 57(22): p. 6601-6604. http://doi.org/10.1002/anie.201712224
106.
Mukherjee, K., Narindoshvili, T., Raushel, F. M., Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12. Biochemistry, 2018. 57(19): p. 2857-2867. http://doi.org/10.1021/acs.biochem.8b00392
107.
Bridwell-Rabb, J., Grell, T. A. J., Drennan, C. L., A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited. Annu Rev Biochem, 2018. 87: p. 555-584. http://doi.org/10.1146/annurev-biochem-062917-012500
108.
Yan, X. F., Xin, L., Yen, J. T., Zeng, Y., Jin, S., Cheang, Q. W., Fong, R., Chiam, K. H., Liang, Z. X., Gao, Y. G., Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein. J Biol Chem, 2018. 293(1): p. 100-111. http://doi.org/10.1074/jbc.M117.815704
109.
Jeoung, J., Dobbek, H., ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster. Proceedings of the National Academy of Sciences, 2018. 115(12): p. 2994-2999. http://doi.org/10.1073/pnas.1720489115
110.
Ongpipattanakul, C., Nair, S. K., Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis. ACS Chem Biol, 2018. 13(10): p. 2989-2999. http://doi.org/10.1021/acschembio.8b00668
111.
Liao, L., Schaefer, A. L., Coutinho, B. G., Brown, P. J. B., Greenberg, E. P., An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. Proc Natl Acad Sci U S A, 2018. 115(29): p. 7587-7592. http://doi.org/10.1073/pnas.1808351115
112.
Wood, B. M., Santa Maria, J. P. Jr., Matano, L. M., Vickery, C. R., Walker, S., A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem, 2018. 293(46): p. 17985-17996. http://doi.org/10.1074/jbc.RA118.004561
113.
Chang, C. Y., Yan, X., Crnovcic, I., Annaval, T., Chang, C., Nocek, B., Rudolf, J. D., Yang, D., Hindra, , Babnigg, G., Joachimiak, A., Phillips, G. N. Jr., Shen, B., Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chem Biol, 2018. 25(9): p. 1075-1085 e4. http://doi.org/10.1016/j.chembiol.2018.05.012
114.
Green, C. M., Novikova, O., Belfort, M., The dynamic intein landscape of eukaryotes. Mob DNA, 2018. 9(1): p. 4. http://doi.org/10.1186/s13100-018-0111-x
115.
Qiu, B., Xia, B., Zhou, Q., Lu, Y., He, M., Hasegawa, K., Ma, Z., Zhang, F., Gu, L., Mao, Q., Succinate-acetate permease from Citrobacter koseri is an anion channel that unidirectionally translocates acetate. Cell research, 2018. 28(6): p. 644. http://doi.org/10.1038/s41422-018-0032-8
116.
Mehrer, C. R., Incha, M. R., Politz, M. C., Pfleger, B. F., Anaerobic production of medium-chain fatty alcohols via a beta-reduction pathway. Metab Eng, 2018. 48: p. 63-71. http://doi.org/10.1016/j.ymben.2018.05.011
117.
Taylor, Z. W., Raushel, F. M., Cytidine Diphosphoramidate Kinase: An Enzyme Required for the Biosynthesis of the O-Methyl Phosphoramidate Modification in the Capsular Polysaccharides of Campylobacter jejuni. Biochemistry, 2018. 57(15): p. 2238-2244. http://doi.org/10.1021/acs.biochem.8b00279
118.
Kenney, G. E., Dassama, L. M. K., Pandelia, M. E., Gizzi, A. S., Martinie, R. J., Gao, P., DeHart, C. J., Schachner, L. F., Skinner, O. S., Ro, S. Y., Zhu, X., Sadek, M., Thomas, P. M., Almo, S. C., Bollinger, J. M. Jr., Krebs, C., Kelleher, N. L., Rosenzweig, A. C., The biosynthesis of methanobactin. Science, 2018. 359(6382): p. 1411-1416. http://doi.org/10.1126/science.aap9437
119.
Koppel, N., Bisanz, J. E., Pandelia, M. E., Turnbaugh, P. J., Balskus, E. P., Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. Elife, 2018. 7: p. e33953. http://doi.org/10.7554/eLife.33953
120.
Lei, L., Cherukuri, K. P., Alcolombri, U., Meltzer, D., Tawfik, D. S, The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of bona fide DMSP lyases as well as other enzymes with unknown function. Biochemistry, 2018. 57(24): p. 3364-3377. http://doi.org/10.1021/acs.biochem.8b00097
121.
Ho, C. L., Tan, H. Q., Chua, K. J., Kang, A., Lim, K. H., Ling, K. L., Yew, W. S., Lee, Y. S., Thiery, J. P., Chang, M. W., Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng, 2018. 2(1): p. 27-37. http://doi.org/10.1038/s41551-017-0181-y
122.
Li, Y., Zhong, Z., Zhang, W., Qian, P., Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nature communications, 2018. 9(1): p. 3273. http://doi.org/10.1038/s41467-018-05781-6
123.
Calhoun, S., Korczynska, M., Wichelecki, D. J., San Francisco, B., Zhao, S., Rodionov, D. A., Vetting, M. W., Al-Obaidi, N. F., Lin, H., O'Meara, M. J., Scott, D. A., Morris, J. H., Russel, D., Almo, S. C., Osterman, A. L., Gerlt, J. A., Jacobson, M. P., Shoichet, B. K., Sali, A., Prediction of enzymatic pathways by integrative pathway mapping. Elife, 2018. 7: p. e31097. http://doi.org/10.7554/eLife.31097
124.
Dunkle, J. A, Bruno, M. R, Outten, F W., Frantom, P. A, Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS. Biochemistry, 2018. 58(6): p. 687-696. http://doi.org/10.1021/acs.biochem.8b01122
125.
Han, L., Yuan, J., Ao, X., Lin, S., Han, X., Ye, H., Biochemical Characterization and Phylogenetic Analysis of the Virulence Factor Lysine Decarboxylase From Vibrio vulnificus. Front Microbiol, 2018. 9: p. 3082. http://doi.org/10.3389/fmicb.2018.03082
126.
Dalponte, L., Parajuli, A., Younger, E., Mattila, A., Jokela, J., Wahlsten, M., Leikoski, N., Sivonen, K., Jarmusch, S. A., Houssen, W. E., Fewer, D. P., N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry, 2018. 57(50): p. 6860-6867. http://doi.org/10.1021/acs.biochem.8b00879
127.
Bastard, K., Isabet, T., Stura, E. A, Legrand, P., Zaparucha, A., Structural studies based on two lysine dioxygenases with distinct regioselectivity brings insights into enzyme specificity within the clavaminate synthase-like family. Scientific reports, 2018. 8(1): p. 16587. http://doi.org/10.1038/s41598-018-34795-9
128.
Mallette, E., Kimber, M. S., Structural and kinetic characterization of (S)-1-amino-2-propanol kinase from the aminoacetone utilization microcompartment of Mycobacterium smegmatis. J Biol Chem, 2018. 293(51): p. 19909-19918. http://doi.org/10.1074/jbc.RA118.005485
129.
Liu, D., Wei, Y., Liu, X., Zhou, Y., Jiang, L., Yin, J., Wang, F., Hu, Y., Urs, A. N N., Liu, Y., Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nature communications, 2018. 9(1): p. 4224. http://doi.org/10.1038/s41467-018-06627-x.
130.
Nemmara, V. V., Xiang, D. F., Fedorov, A. A., Fedorov, E. V., Bonanno, J. B., Almo, S. C., Raushel, F. M., Substrate Profile of the Phosphotriesterase Homology Protein from Escherichia coli. Biochemistry, 2018. 57(43): p. 6219-6227. http://doi.org/10.1021/acs.biochem.8b00935
131.
Blair, P. M., Land, M. L., Piatek, M. J., Jacobson, D. A., Lu, T. S., Doktycz, M. J., Pelletier, D. A., Exploration of the Biosynthetic Potential of the Populus Microbiome. mSystems, 2018. 3(5): p. e00045-18. http://doi.org/10.1128/mSystems.00045-18
132.
Ward, A. C., Allenby, N. E., Genome mining for the search and discovery of bioactive compounds: the Streptomyces paradigm. FEMS Microbiol Lett, 2018. 365(24): p. fny240. http://doi.org/10.1093/femsle/fny240
133.
Hogancamp, T. N., Mabanglo, M. F., Raushel, F. M., Structure and Reaction Mechanism of the LigJ Hydratase: An Enzyme Critical for the Bacterial Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway. Biochemistry, 2018. 57(40): p. 5841-5850. http://doi.org/10.1021/acs.biochem.8b00713
134.
Ayikpoe, R., Salazar, J., Majestic, B., Latham, J. A, Mycofactocin biosynthesis proceeds through 3-amino-5-[(p-hydroxyphenyl) methyl]-4, 4-dimethyl-2-pyrrolidinone (AHDP); direct observation of MftE specificity toward MftA. Biochemistry, 2018. 57(37): p. 5379-5383. http://doi.org/10.1021/acs.biochem.8b00816
135.
Jiang, S., Network analysis of RAD51 proteins in Metazoa and the evolutionary relationships with their archaeal homologs. Frontiers in genetics, 2018. 9: p. 383. http://doi.org/10.3389/fgene.2018.00383
136.
Fisher, O. S., Kenney, G. E., Ross, M. O., Ro, S. Y., Lemma, B. E., Batelu, S., Thomas, P. M., Sosnowski, V. C., DeHart, C. J., Kelleher, N. L., Stemmler, T. L., Hoffman, B. M., Rosenzweig, A. C., Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun, 2018. 9(1): p. 4276. http://doi.org/10.1038/s41467-018-06681-5
137.
Reichelt, R., Grohmann, D., Willkomm, S., A journey through the evolutionary diversification of archaeal Lsm and Hfq proteins. Emerging Topics in Life Sciences, 2018. 2(4): p. 647-657. http://doi.org/10.1042/etls20180034
138.
Luo, S., Huang, H., Discovering a new catabolic pathway of D-ribonate in Mycobacterium smegmatis. Biochem Biophys Res Commun, 2018. 505(4): p. 1107-1111. http://doi.org/10.1016/j.bbrc.2018.10.033
139.
Punekar, N., Future of Enzymology: An Appraisal. ENZYMES: Catalysis, Kinetics and Mechanisms, 2018. ; . ;
140.
Leong, R., Urano, D., Molecular Breeding for Plant Factory: Strategies and Technology. Smart Plant Factory, 2018. http://doi.org/10.1007/978-981-13-1065-2_19
141.
Bushin, L. B., Clark, K. A., Pelczer, I., Seyedsayamdost, M. R., Charting an Unexplored Streptococcal Biosynthetic Landscape Reveals a Unique Peptide Cyclization Motif. J Am Chem Soc, 2018. 140(50): p. 17674-17684. http://doi.org/10.1021/jacs.8b10266
142.
Annaval, T., Han, L., Rudolf, J. D., Xie, G., Yang, D., Chang, C. Y., Ma, M., Crnovcic, I., Miller, M. D., Soman, J., Xu, W., Phillips, G. N. Jr., Shen, B., Biochemical and Structural Characterization of TtnD, a Prenylated FMN-Dependent Decarboxylase from the Tautomycetin Biosynthetic Pathway. ACS Chem Biol, 2018. 13(9): p. 2728-2738. http://doi.org/10.1021/acschembio.8b00673
143.
Dong, L. B., Rudolf, J. D., Deng, M. R., Yan, X., Shen, B., Discovery of the Tiancilactone Antibiotics by Genome Mining of Atypical Bacterial Type II Diterpene Synthases. Chembiochem, 2018. 19(16): p. 1727-1733. http://doi.org/10.1002/cbic.201800285
144.
Gilchrist, C. L. M., Li, H., Chooi, Y. H., Panning for gold in mould: can we increase the odds for fungal genome mining?. Org Biomol Chem, 2018. 16(10): p. 1620-1626. http://doi.org/10.1039/c7ob03127k
145.
Purohit, R., Ross, M. O., Batelu, S., Kusowski, A., Stemmler, T. L., Hoffman, B. M., Rosenzweig, A. C., Cu(+)-specific CopB transporter: Revising P1B-type ATPase classification. Proc Natl Acad Sci U S A, 2018. 115(9): p. 2108-2113. http://doi.org/10.1073/pnas.1721783115
146.
Ryu, H., Grove, T. L., Almo, S. C., Kim, J., Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Nucleic Acids Res, 2018. 46(17): p. 9160-9169. http://doi.org/10.1093/nar/gky592
147.
Mahanta, N., Liu, A., Dong, S., Nair, S. K., Mitchell, D. A., Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proc Natl Acad Sci U S A, 2018. 115(12): p. 3030-3035. http://doi.org/10.1073/pnas.1722324115
148.
Rose, H. R., Ghosh, M. K., Maggiolo, A. O., Pollock, C. J., Blaesi, E. J., Hajj, V., Wei, Y., Rajakovich, L. J., Chang, W. C., Han, Y., Hajj, M., Krebs, C., Silakov, A., Pandelia, M. E., Bollinger, J. M. Jr., Boal, A. K., Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry, 2018. 57(18): p. 2679-2693. http://doi.org/10.1021/acs.biochem.8b00247
149.
Wang, S. C., Cobalamin-dependent radical S-adenosyl-l-methionine enzymes in natural product biosynthesis. Nat Prod Rep, 2018. 35(8): p. 707-720. http://doi.org/10.1039/c7np00059f
150.
Hossain, G. S., Nadarajan, S. P., Zhang, L., Ng, T. K., Foo, J. L., Ling, H., Choi, W. J., Chang, M. W., Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms. Front Microbiol, 2018. 9: p. 155. http://doi.org/10.3389/fmicb.2018.00155
151.
Copp, J. N., Akiva, E., Babbitt, P. C., Tokuriki, N., Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry, 2018. 57(31): p. 4651-4662. http://doi.org/10.1021/acs.biochem.8b00473
152.
Carter, M. S., Zhang, X., Huang, H., Bouvier, J. T., Francisco, B. S., Vetting, M. W., Al-Obaidi, N., Bonanno, J. B., Ghosh, A., Zallot, R. G., Andersen, H. M., Almo, S. C., Gerlt, J. A., Functional assignment of multiple catabolic pathways for D-apiose. Nat Chem Biol, 2018. 14(7): p. 696-705. http://doi.org/10.1038/s41589-018-0067-7
153.
Li, B. C., Zhang, T., Li, Y. Q., Ding, G. B., Target Discovery of Novel alpha-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol, 2019. 189(4): p. 1245-1261. http://doi.org/10.1007/s12010-019-03063-5
154.
Erb, T. J, Back to the future: Why we need enzymology to build a synthetic metabolism of the future. Beilstein journal of organic chemistry, 2019. 15(1): p. 551-557. http://doi.org/10.3762/bjoc.15.49
155.
Ji, X., Mo, T., Liu, W. Q., Ding, W., Deng, Z., Zhang, Q., Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl, 2019. 58(19): p. 6235-6238. http://doi.org/10.1002/anie.201814708
156.
Harrison, A. O, Moore, R. M, Polson, S. W., Wommack, K E., Reannotation of the ribonucleotide reductase in a cyanophage reveals life history strategies within the virioplankton. Frontiers in microbiology, 2019. 10: p. 134. http://doi.org/10.3389/fmicb.2019.00134
157.
Vu, V. V., Hangasky, J. A., Detomasi, T. C., Henry, S. J. W., Ngo, S. T., Span, E. A., Marletta, M. A., Substrate selectivity in starch polysaccharide monooxygenases. J Biol Chem, 2019. 294(32): p. 12157-12166. http://doi.org/10.1074/jbc.RA119.009509
158.
Guo, J., Higgins, M. A, Daniel-Ivad, P., Ryan, K. S, An Asymmetric Reductase that Intercepts Acyclic Imino Acids Produced In Situ by a Partner Oxidase. Journal of the American Chemical Society, 2019. 141(31): p. 12258-12267. http://doi.org/10.1021/jacs.9b03307
159.
Pongpamorn, P., Watthaisong, P., Pimviriyakul, P., Jaruwat, A., Lawan, N., Chitnumsub, P., Chaiyen, P., Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase. Chembiochem, 2019. 20(24): p. 3020-3031. http://doi.org/10.1002/cbic.201900413
160.
Giessen, T. W., Orlando, B. J., Verdegaal, A. A., Chambers, M. G., Gardener, J., Bell, D. C., Birrane, G., Liao, M., Silver, P. A., Large protein organelles form a new iron sequestration system with high storage capacity. Elife, 2019. 8:. http://doi.org/10.7554/eLife.46070
161.
Sutzl, L., Foley, G., Gillam, E. M. J., Boden, M., Haltrich, D., The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels, 2019. 12(1): p. 118. http://doi.org/10.1186/s13068-019-1457-0
162.
Hangasky, J. A, Detomasi, T. C, Marletta, M. A, Glycosidic bond hydroxylation by polysaccharide monooxygenases. Trends in Chemistry, 2019. http://doi.org/10.1016/j.trechm.2019.01.007
163.
Bobeica, S. C, Dong, S., Huo, L., Mazo, N., McLaughlin, M. I, Jimenez-Oses, G., Nair, S. K, van der Donk, W. A, Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife, 2019. 8: p. e42305. http://doi.org/10.7554/eLife.42305
164.
Yin, L., Harwood, C. S., Functional divergence of annotated l-isoaspartate O-methyltransferases in an alpha-proteobacterium. J Biol Chem, 2019. 294(8): p. 2854-2861. http://doi.org/10.1074/jbc.RA118.006546
165.
Wu, Y., Wu, R., Mandalapu, D., Ji, X., Chen, T., Ding, W., Zhang, Q., Radical SAM-dependent adenosylation catalyzed by l-tyrosine lyases. Org Biomol Chem, 2019. 17(7): p. 1809-1812. http://doi.org/10.1039/c8ob02906g
166.
Rajakovich, L. J., Balskus, E. P., Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat Prod Rep, 2019. 36(4): p. 593-625. http://doi.org/10.1039/c8np00074c
167.
Mandalapu, D., Ji, X., Zhang, Q., Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes. Biochemistry, 2019. 58(1): p. 36-39. http://doi.org/10.1021/acs.biochem.8b00844
168.
Lin, G., Warden-Rothman, R., Voigt, C. A, Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019. http://doi.org/10.1016/j.coisb.2019.04.004
169.
Malik, A., Kim, S. B., A comprehensive in silico analysis of sortase superfamily. J Microbiol, 2019. 57(6): p. 431-443. http://doi.org/10.1007/s12275-019-8545-5
170.
Jia, B., Yuan, D. P., Lan, W. J., Xuan, Y. H., Jeon, C. O., New insight into the classification and evolution of glucose transporters in the Metazoa. The FASEB Journal, 2019. 33(6): p. 7519-7528. http://doi.org/10.1096/fj.201802617R
171.
Rose, H. R., Maggiolo, A. O., McBride, M. J., Palowitch, G. M., Pandelia, M. E., Davis, K. M., Yennawar, N. H., Boal, A. K., Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Biochemistry, 2019. 58(14): p. 1845-1860. http://doi.org/10.1021/acs.biochem.8b01252
172.
Rizzolo, K., Cohen, S. E, Weitz, A. C, Muñoz, M. M L., Hendrich, M. P, Drennan, C. L, Elliott, S. J, A widely distributed diheme enzyme from Burkholderia that displays an atypically stable bis-Fe (IV) state. Nature communications, 2019. 10(1): p. 1101. http://doi.org/10.1038/s41467-019-09020-4
173.
Blaby-Haas, C. E., Merchant, S. S., Comparative and Functional Algal Genomics. Annu Rev Plant Biol, 2019. 70: p. 605-638. http://doi.org/10.1146/annurev-arplant-050718-095841
174.
Gama, S. R, Vogt, M., Kalina, T., Hupp, K., Hammerschmidt, F., Pallitsch, K., Zechel, D. L, An oxidative pathway for microbial utilization of methylphosphonic acid as a phosphate source. ACS chemical biology, 2019. 14(4): p. 735-741. http://doi.org/10.1021/acschembio.9b00024
175.
Rajakovich, L. J., Pandelia, M. E., Mitchell, A. J., Chang, W. C., Zhang, B., Boal, A. K., Krebs, C., Bollinger, J. M. Jr., A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry, 2019. 58(12): p. 1627-1647. http://doi.org/10.1021/acs.biochem.9b00044
176.
Rolf, J., Rosenthal, K., Lütz, S., Application of Cell-Free Protein Synthesis for Faster Biocatalyst Development. Catalysts, 2019. 9(2): p. 190. http://doi.org/10.3390/catal9020190
177.
Pellock, S. J, Walton, W. G, Redinbo, M. R, Selecting a Single Stereocenter: The Molecular Nuances That Differentiate β-Hexuronidases in the Human Gut Microbiome. Biochemistry, 2019. 58(9): p. 1311-1317. http://doi.org/10.1021/acs.biochem.8b01285
178.
Zhang, Y., Blaby-Haas, C. E, Steimle, S., Verissimo, A. F, Garcia-Angulo, V. A, Koch, H., Daldal, F., Khalfaoui-Hassani, B., Cu Transport by the Extended Family of C co A-l ike T ransporters (CalT) in Proteobacteria. Scientific reports, 2019. 9(1): p. 1208. http://doi.org/10.1038/s41598-018-37988-4
179.
Zhou, Y., Wei, Y., Lin, L., Xu, T., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Biochemical and structural investigation of sulfoacetaldehyde reductase from Klebsiella oxytoca. Biochem J, 2019. 476(4): p. 733-746. http://doi.org/10.1042/BCJ20190005
180.
Biernat, K. A., Pellock, S. J., Bhatt, A. P., Bivins, M. M., Walton, W. G., Tran, B. N. T., Wei, L., Snider, M. C., Cesmat, A. P., Tripathy, A., Erie, D. A., Redinbo, M. R., Structure, function, and inhibition of drug reactivating human gut microbial beta-glucuronidases. Sci Rep, 2019. 9(1): p. 825. http://doi.org/10.1038/s41598-018-36069-w
181.
Maresca, J. A., Keffer, J. L., Hempel, P. P., Polson, S. W., Shevchenko, O., Bhavsar, J., Powell, D., Miller, K. J., Singh, A., Hahn, M. W., Light Modulates the Physiology of Nonphototrophic Actinobacteria. J Bacteriol, 2019. 201(10): p. e00740-18. http://doi.org/10.1128/JB.00740-18
182.
Pellock, S. J., Walton, W. G., Ervin, S. M., Torres-Rivera, D., Creekmore, B. C., Bergan, G., Dunn, Z. D., Li, B., Tripathy, A., Redinbo, M. R., Discovery and Characterization of FMN-Binding beta-Glucuronidases in the Human Gut Microbiome. J Mol Biol, 2019. 431(5): p. 970-980. http://doi.org/10.1016/j.jmb.2019.01.013
183.
Gonzalez, J. M., Hernandez, L., Manzano, I., Pedros-Alio, C., Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate. ISME J, 2019. 13(5): p. 1183-1197. http://doi.org/10.1038/s41396-019-0347-6
184.
Dong, L. B., Liu, Y. C., Cepeda, A. J., Kalkreuter, E., Deng, M. R., Rudolf, J. D., Chang, C., Joachimiak, A., Phillips, G. N. Jr., Shen, B., Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc, 2019. 141(31): p. 12406-12412. http://doi.org/10.1021/jacs.9b06183
185.
Dunbar, K. L, Dell, M., Molloy, E. M, Kloss, F., Hertweck, C., Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals a Novel Nonribosomal Peptide Backbone‐Tailoring Strategy. Angewandte Chemie, 2019. 58(37): p. 13014-13018. http://doi.org/10.1002/anie.201905992
186.
Gumkowski, J. D, Martinie, R. J, Corrigan, P., Pan, J., Bauerle, M. R, Almarei, M., Booker, S. J, Silakov, A., Krebs, C., Boal, A. K, Analysis of RNA methylation by phylogenetically diverse Cfr radical SAM enzymes reveals an iron-binding accessory domain in a clostridial enzyme. Biochemistry, 2019. 58(29): p. 3169-3184. http://doi.org/10.1021/acs.biochem.9b00197
187.
Khavrutskii, I. V, Compton, J. R, Jurkouich, K., Legler, P. M, Paired Carboxylic Acids in Enzymes and their Role in Selective Substrate Binding, Catalysis, and Unusually Shifted pKa Values. Biochemistry, 2019. 58(52): p. 5351-5365. http://doi.org/10.1021/acs.biochem.9b00429
188.
Jaroensuk, J., Intasian, P., Kiattisewee, C., Munkajohnpon, P., Chunthaboon, P., Buttranon, S., Trisrivirat, D., Wongnate, T., Maenpuen, S., Tinikul, R., Chaiyen, P., Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem, 2019. 294(30): p. 11536-11548. http://doi.org/10.1074/jbc.RA119.008246
189.
Kraberger, S., Schmidlin, K., Fontenele, R. S., Walters, M., Varsani, A., Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses, 2019. 11(6): p. 532. http://doi.org/10.3390/v11060532
190.
Morgan, G. L., Kretsch, A. M., Santa Maria, K. C., Weeks, S. J., Li, B., Specificity of Nonribosomal Peptide Synthetases in the Biosynthesis of the Pseudomonas virulence factor. Biochemistry, 2019. 58(52): p. 5249-5254. http://doi.org/10.1021/acs.biochem.9b00360
191.
Tong, Y., Wei, Y., Hu, Y., Ang, E. L., Zhao, H., Zhang, Y., A Pathway for Isethionate Dissimilation in Bacillus krulwichiae. Appl Environ Microbiol, 2019. 85(15): p. AEM. 00793-19. http://doi.org/10.1128/AEM.00793-19
192.
Chekan, J. R., Lee, G. Y., El Gamal, A., Purdy, T. N., Houk, K. N., Moore, B. S., Bacterial Tetrabromopyrrole Debrominase Shares a Reductive Dehalogenation Strategy with Human Thyroid Deiodinase. Biochemistry, 2019. 58(52): p. 5329-5338. http://doi.org/10.1021/acs.biochem.9b00318
193.
Radle, M. I, Miller, D. V, Laremore, T. N, Booker, S. J, Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. Journal of Biological Chemistry, 2019. 294(11712-11725): p. jbc. RA119. 007609. http://doi.org/10.1074/jbc.RA119.007609
194.
Hepowit, N. L., Maupin-Furlow, J. A., Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea. J Bacteriol, 2019. 201(15): p. JB. 00254-19. http://doi.org/10.1128/JB.00254-19
195.
Clark, J., Terwilliger, A., Nguyen, C., Green, S., Nobles, C., Maresso, A., Heme catabolism in the causative agent of anthrax. Mol Microbiol, 2019. 112(2): p. 515-531. http://doi.org/10.1111/mmi.14270
196.
Hudson, G. A, Burkhart, B. J, DiCaprio, A. J, Schwalen, C., Kille, B., Pogorelov, T. V, Mitchell, D. A, Bioinformatic mapping of radical SAM-dependent RiPPs identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. Journal of the American Chemical Society, 2019. 141(20): p. 8228-8238. http://doi.org/10.1021/jacs.9b01519.
197.
Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A., Nair, S. K., Mechanistic Basis for Ribosomal Peptide Backbone Modifications. ACS Cent Sci, 2019. 5(5): p. 842-851. http://doi.org/10.1021/acscentsci.9b00124
198.
Bashiri, G., Antoney, J., Jirgis, E. N., Shah, M. V, Ney, B., Copp, J., Stuteley, S. M, Sreebhavan, S., Palmer, B., Middleditch, M., A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nature communications, 2019. 10(1): p. 1558. http://doi.org/10.1038/s41467-019-09534-x
199.
Chen, W., Frantom, P. A., Distinct mechanisms of substrate selectivity in the DRE-TIM metallolyase superfamily: A role for the LeuA dimer regulatory domain. Arch Biochem Biophys, 2019. 664: p. 1-8. http://doi.org/10.1016/j.abb.2019.01.021
200.
Mahanta, N., Hicks, K. A., Naseem, S., Zhang, Y., Fedoseyenko, D., Ealick, S. E., Begley, T. P., Menaquinone Biosynthesis: Biochemical and Structural Studies of Chorismate Dehydratase. Biochemistry, 2019. 58(14): p. 1837-1840. http://doi.org/10.1021/acs.biochem.9b00105
201.
Scott, T. A., Piel, J., The hidden enzymology of bacterial natural product biosynthesis. Nat Rev Chem, 2019. 3(7): p. 404-425. http://doi.org/10.1038/s41570-019-0107-1
202.
Copp, J. N, Anderson, D. W, Akiva, E., Babbitt, P. C, Tokuriki, N., Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods in enzymology, 2019. 620: p. 315-347. http://doi.org/10.1016/bs.mie.2019.03.015
203.
Hai, Y., Huang, A. M., Tang, Y., Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc Natl Acad Sci U S A, 2019. 116(21): p. 10348-10353. http://doi.org/10.1073/pnas.1903282116
204.
Shi, J., Liu, C. L., Zhang, B., Guo, W. J., Zhu, J., Chang, C., Zhao, E. J., Jiao, R. H., Tan, R. X., Ge, H. M., Genome mining and biosynthesis of kitacinnamycins as a STING activator. Chemical science, 2019. 10(18): p. 4839-4846. http://doi.org/10.1039/c9sc00815b
205.
Morishita, Y., Zhang, H., Taniguchi, T., Mori, K., Asai, T., The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi. Org Lett, 2019. 21(12): p. 4788-4792. http://doi.org/10.1021/acs.orglett.9b01674
206.
Chekan, J. R., Ongpipattanakul, C., Wright, T. R., Zhang, B., Bollinger, J. M. Jr., Rajakovich, L. J., Krebs, C., Cicchillo, R. M., Nair, S. K., Molecular basis for enantioselective herbicide degradation imparted by aryloxyalkanoate dioxygenases in transgenic plants. Proc Natl Acad Sci U S A, 2019. 116(27): p. 13299-13304. http://doi.org/10.1073/pnas.1900711116
207.
Ting, C. P, Funk, M. A, Halaby, S. L, Zhang, Z., Gonen, T., van der Donk, W. A, Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science, 2019. 365(6450): p. 280-284. http://doi.org/10.1126/science.aau6232
208.
Lefeuvre, P., Martin, D. P., Elena, S. F., Shepherd, D. N., Roumagnac, P., Varsani, A., Evolution and ecology of plant viruses. Nat Rev Microbiol, 2019. 17(10): p. 632-644. http://doi.org/10.1038/s41579-019-0232-3
209.
Mo, T., Yuan, H., Wang, F., Ma, S., Wang, J., Li, T., Liu, G., Yu, S., Tan, X., Ding, W., Zhang, Q., Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis. FEBS Lett, 2019. 593(6): p. 573-580. http://doi.org/10.1002/1873-3468.13341
210.
Chen, D., Zhao, Q., Liu, W., Discovery of caerulomycin/collismycin-type 2,2'-bipyridine natural products in the genomic era. J Ind Microbiol Biotechnol, 2019. 46(3-4): p. 459-468. http://doi.org/10.1007/s10295-018-2092-7
211.
Amatuni, A., Renata, H., Identification of a lysine 4-hydroxylase from the glidobactin biosynthesis and evaluation of its biocatalytic potential. Org Biomol Chem, 2019. 17(7): p. 1736-1739. http://doi.org/10.1039/c8ob02054j
212.
Niehs, S. P., Dose, B., Scherlach, K., Pidot, S. J., Stinear, T. P., Hertweck, C., Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-Bacterial Symbiosis. ACS Chem Biol, 2019. 14(8): p. 1811-1818. http://doi.org/10.1021/acschembio.9b00406
213.
Liu, J., Lin, Z., Li, Y., Zheng, Q., Chen, D., Liu, W., Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org Biomol Chem, 2019. 17(15): p. 3727-3731. http://doi.org/10.1039/c9ob00402e
214.
Clark, K. A., Bushin, L. B., Seyedsayamdost, M. R., Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis. J Am Chem Soc, 2019. 141(27): p. 10610-10615. http://doi.org/10.1021/jacs.9b05151
215.
Zhi, Y., Narindoshvili, T., Bogomolnaya, L., Talamantes, M., El Saadi, A., Andrews-Polymenis, H., Raushel, F. M., Deciphering the Enzymatic Function of the Bovine Enteric Infection-Related Protein YfeJ from Salmonella enterica Serotype Typhimurium. Biochemistry, 2019. 58(9): p. 1236-1245. http://doi.org/10.1021/acs.biochem.8b01283
216.
Mukherjee, K., Huddleston, J. P., Narindoshvili, T., Nemmara, V. V., Raushel, F. M., Functional Characterization of the ycjQRS Gene Cluster from Escherichia coli: A Novel Pathway for the Transformation of d-Gulosides to d-Glucosides. Biochemistry, 2019. 58(10): p. 1388-1399. http://doi.org/10.1021/acs.biochem.8b01278
217.
Tsui, H. S., Pham, N. V. B., Amer, B. R., Bradley, M. C., Gosschalk, J. E., Gallagher-Jones, M., Ibarra, H., Clubb, R. T., Blaby-Haas, C. E., Clarke, C. F., Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res, 2019. 60(7): p. 1293-1310. http://doi.org/10.1194/jlr.M093534
218.
Zhang, R., Xu, X., Cao, H., Yuan, C., Yuminaga, Y., Zhao, S., Shi, J., Zhang, B., Purification, characterization, and application of a high activity 3-ketosteroid-Delta(1)-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol, 2019. 103(16): p. 6605-6616. http://doi.org/10.1007/s00253-019-09988-5
219.
Coscolin, C., Katzke, N., Garcia-Moyano, A., Navarro-Fernandez, J., Almendral, D., Martinez-Martinez, M., Bollinger, A., Bargiela, R., Gertler, C., Chernikova, T. N., Rojo, D., Barbas, C., Tran, H., Golyshina, O. V., Koch, R., Yakimov, M. M., Bjerga, G. E. K., Golyshin, P. N., Jaeger, K. E., Ferrer, M., Bioprospecting Reveals Class III omega-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Appl Environ Microbiol, 2019. 85(2):. http://doi.org/10.1128/AEM.02404-18
220.
Sikandar, A., Franz, L., Melse, O., Antes, I., Koehnke, J., Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis. J Am Chem Soc, 2019. 141(25): p. 9748-9752. http://doi.org/10.1021/jacs.8b12231
221.
Wang, Y., Shin, I., Fu, Y., Colabroy, K. L., Liu, A., Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Biochemistry, 2019. 58(52): p. 5339-5350. http://doi.org/10.1021/acs.biochem.9b00396
222.
Lee, S., Kang, J., Kim, J., Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci Rep, 2019. 9(1): p. 8059. http://doi.org/10.1038/s41598-019-44592-7
223.
DiCaprio, A. J, Firouzbakht, A., Hudson, G. A., Mitchell, D. A., Enzymatic Reconstitution and Biosynthetic Investigation of the Lasso Peptide Fiusilassin. J Am Chem Soc, 2019. 141(1): p. 290-297. http://doi.org/10.1021/jacs.8b09928
224.
Peck, S. C., Denger, K., Burrichter, A., Irwin, S. M., Balskus, E. P., Schleheck, D., A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci U S A, 2019. 116(8): p. 3171-3176. http://doi.org/10.1073/pnas.1815661116
225.
Caruso, A., Bushin, L. B., Clark, K. A., Martinie, R. J., Seyedsayamdost, M. R., Radical Approach to Enzymatic beta-Thioether Bond Formation. J Am Chem Soc, 2019. 141(2): p. 990-997. http://doi.org/10.1021/jacs.8b11060
226.
Hermenau, R., Mehl, J. L., Ishida, K., Dose, B., Pidot, S. J., Stinear, T. P., Hertweck, C., Genomics-Driven Discovery of NO-Donating Diazeniumdiolate Siderophores in Diverse Plant-Associated Bacteria. Angew Chem Int Ed Engl, 2019. 58(37): p. 13024-13029. http://doi.org/10.1002/anie.201906326
227.
Zhang, D., Zhang, F., Liu, W., A KAS-III Heterodimer in Lipstatin Biosynthesis Nondecarboxylatively Condenses C8 and C14 Fatty Acyl-CoA Substrates by a Variable Mechanism during the Establishment of a C22 Aliphatic Skeleton. J Am Chem Soc, 2019. 141(9): p. 3993-4001. http://doi.org/10.1021/jacs.8b12843
228.
Helfrich, E. J. N., Ueoka, R., Dolev, A., Rust, M., Meoded, R. A., Bhushan, A., Califano, G., Costa, R., Gugger, M., Steinbeck, C., Moreno, P., Piel, J., Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol, 2019. 15(8): p. 813-821. http://doi.org/10.1038/s41589-019-0313-7
229.
Sieow, B. F., Nurminen, T. J., Ling, H., Chang, M. W., Meta-Omics- and Metabolic Modeling-Assisted Deciphering of Human Microbiota Metabolism. Biotechnol J, 2019. 14(9): p. e1800445. http://doi.org/10.1002/biot.201800445
230.
Fontenele, R. S., Lacorte, C., Lamas, N. S., Schmidlin, K., Varsani, A., Ribeiro, S. G., Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses, 2019. 11(8):. http://doi.org/10.3390/v11080710
231.
Desmarais, J. J., Flamholz, A. I., Blikstad, C., Dugan, E. J., Laughlin, T. G., Oltrogge, L. M., Chen, A. W., Wetmore, K., Diamond, S., Wang, J. Y., Savage, D. F., DABs are inorganic carbon pumps found throughout prokaryotic phyla. Nat Microbiol, 2019. 4(12): p. 2204-2215. http://doi.org/10.1038/s41564-019-0520-8
232.
You, J., Lin, S., Jiang, T., Origins and Evolution of the alpha-L-Fucosidases: From Bacteria to Metazoans. Front Microbiol, 2019. 10: p. 1756. http://doi.org/10.3389/fmicb.2019.01756
233.
Huddleston, J. P., Raushel, F. M., Biosynthesis of GDP-d-glycero-alpha-d-manno-heptose for the Capsular Polysaccharide of Campylobacter jejuni. Biochemistry, 2019. 58(37): p. 3893-3902. http://doi.org/10.1021/acs.biochem.9b00548
234.
Huddleston, J. P., Raushel, F. M., Functional Characterization of YdjH, a Sugar Kinase of Unknown Specificity in Escherichia coli K12. Biochemistry, 2019. 58(31): p. 3354-3364. http://doi.org/10.1021/acs.biochem.9b00327
235.
Huddleston, J. P., Thoden, J. B., Dopkins, B. J., Narindoshvili, T., Fose, B. J., Holden, H. M., Raushel, F. M., Structural and Functional Characterization of YdjI, an Aldolase of Unknown Specificity in Escherichia coli K12. Biochemistry, 2019. 58(31): p. 3340-3353. http://doi.org/10.1021/acs.biochem.9b00326
236.
Neupane, D. P., Fullam, S. H., Chacon, K. N., Yukl, E. T., Crystal structures of AztD provide mechanistic insights into direct zinc transfer between proteins. Commun Biol, 2019. 2: p. 308. http://doi.org/10.1038/s42003-019-0542-z
237.
Yuan, Y., Zallot, R., Grove, T. L., Payan, D. J., Martin-Verstraete, I., Sepic, S., Balamkundu, S., Neelakandan, R., Gadi, V. K., Liu, C. F., Swairjo, M. A., Dedon, P. C., Almo, S. C., Gerlt, J. A., de Crecy-Lagard, V., Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A, 2019. 116(38): p. 19126-19135. http://doi.org/10.1073/pnas.1909604116
238.
Danczak, R. E., Johnston, M. D., Kenah, C., Slattery, M., Wilkins, M. J., Capability for arsenic mobilization in groundwater is distributed across broad phylogenetic lineages. PLoS One, 2019. 14(9): p. e0221694. http://doi.org/10.1371/journal.pone.0221694
239.
Umana, A., Sanders, B. E., Yoo, C. C., Casasanta, M. A., Udayasuryan, B., Verbridge, S. S., Slade, D. J., Utilizing Whole Fusobacterium Genomes To Identify, Correct, and Characterize Potential Virulence Protein Families. J Bacteriol, 2019. 201(23):. http://doi.org/10.1128/JB.00273-19
240.
Ganley, J. G., D'Ambrosio, H. K., Shieh, M., Derbyshire, E. R., Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. Chembiochem, 2019. http://doi.org/10.1002/cbic.201900675
241.
Hutinet, G., Kot, W., Cui, L., Hillebrand, R., Balamkundu, S., Gnanakalai, S., Neelakandan, R., Carstens, A. B., Fa Lui, C., Tremblay, D., Jacobs-Sera, D., Sassanfar, M., Lee, Y. J., Weigele, P., Moineau, S., Hatfull, G. F., Dedon, P. C., Hansen, L. H., de Crecy-Lagard, V., 7-Deazaguanine modifications protect phage DNA from host restriction systems. Nat Commun, 2019. 10(1): p. 5442. http://doi.org/10.1038/s41467-019-13384-y
242.
Liu, Y., Su, L., Fang, Q., Tabudravu, J., Yang, X., Rickaby, K., Trembleau, L., Kyeremeh, K., Deng, Z., Deng, H., Yu, Y., Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. J Org Chem, 2019. 84(24): p. 16323-16328. http://doi.org/10.1021/acs.joc.9b02688
243.
Rodriguez Benitez, A., Narayan, A. R. H., Frontiers in Biocatalysis: Profiling Function across Sequence Space. ACS Cent Sci, 2019. 5(11): p. 1747-1749. http://doi.org/10.1021/acscentsci.9b01112
244.
Pyser, J. B., Baker Dockrey, S. A., Benitez, A. R., Joyce, L. A., Wiscons, R. A., Smith, J. L., Narayan, A. R. H., Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc, 2019. 141(46): p. 18551-18559. http://doi.org/10.1021/jacs.9b09385
245.
Ervin, S. M., Hanley, R. P., Lim, L., Walton, W. G., Pearce, K. H., Bhatt, A. P., James, L. I., Redinbo, M. R., Targeting Regorafenib-Induced Toxicity through Inhibition of Gut Microbial beta-Glucuronidases. ACS Chem Biol, 2019. 14(12): p. 2737-2744. http://doi.org/10.1021/acschembio.9b00663
246.
Bell, A., Brunt, J., Crost, E., Vaux, L., Nepravishta, R., Owen, C. D., Latousakis, D., Xiao, A., Li, W., Chen, X., Walsh, M. A., Claesen, J., Angulo, J., Thomas, G. H., Juge, N., Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol, 2019. 4(12): p. 2393-2404. http://doi.org/10.1038/s41564-019-0590-7
247.
Zwick, C. R. 3rd, Sosa, M. B., Renata, H., Characterization of a Citrulline 4-Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angew Chem Int Ed Engl, 2019. 58(52): p. 18854-18858. http://doi.org/10.1002/anie.201910659
248.
Hager, F. F., Sutzl, L., Stefanovic, C., Blaukopf, M., Schaffer, C., Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci, 2019. 20(19):. http://doi.org/10.3390/ijms20194929
249.
Travis, S., Shay, Madeline R., Manabe, S., Gilbert, Nathaniel C., Frantom, Patrick A., Thompson, Matthew K., Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. MedChemComm, 2019. 10(11): p. 1948-1957. http://doi.org/10.1039/c9md00372j
250.
Ervin, S. M., Li, H., Lim, L., Roberts, L. R., Liang, X., Mani, S., Redinbo, M. R., Gut microbial beta-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem, 2019. 294(49): p. 18586-18599. http://doi.org/10.1074/jbc.RA119.010950
251.
Gomez-Escribano, J. P., Castro, J. F., Razmilic, V., Jarmusch, S. A., Saalbach, G., Ebel, R., Jaspars, M., Andrews, B., Asenjo, J. A., Bibb, M. J., Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34(T) Yields a Novel Lasso Peptide, Leepeptin. Appl Environ Microbiol, 2019. 85(23):. http://doi.org/10.1128/AEM.01752-19
252.
Ji, Z. Y., Nie, Q. Y., Yin, Y., Zhang, M., Pan, H. X., Hou, X. F., Tang, G. L., Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl, 2019. 58(50): p. 18046-18054. http://doi.org/10.1002/anie.201910882
253.
Neugebauer, M.E., Sumida, K.H., Pelton, J.G., McMurry, J.L., Marchand, J.A., Chang, M.C.Y., A family of radical halogenases for the engineering of amino-acid-based products. Nature chemical biology, 2019. 15(10): p. 1009-1016. http://doi.org/10.1038/s41589-019-0355-x
254.
Weiz, G., Mazzaferro, L. S., Kotik, M., Neher, B. D., Halada, P., Kren, V., Breccia, J. D., The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol, 2019. 103(23-24): p. 9493-9504. http://doi.org/10.1007/s00253-019-10180-y
255.
Campbell, I. J., Bennett, G. N., Silberg, J. J., Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Front Energy Res, 2019. 7:. http://doi.org/10.3389/fenrg.2019.00079
256.
Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. C., Lewis, J. C., Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent Sci, 2019. 5(11): p. 1844-1856. http://doi.org/10.1021/acscentsci.9b00835
257.
Marckmann, D., Trasnea, P. I., Schimpf, J., Winterstein, C., Andrei, A., Schmollinger, S., Blaby-Haas, C. E., Friedrich, T., Daldal, F., Koch, H. G., The cbb 3-type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proc Natl Acad Sci U S A, 2019. 116(42): p. 21166-21175. http://doi.org/10.1073/pnas.1913803116
258.
Kenney, G. E., Dassama, L. M. K., Manesis, A. C., Ross, M. O., Chen, S., Hoffman, B. M., Rosenzweig, A. C., MbnH is a diheme MauG-like protein associated with microbial copper homeostasis. J Biol Chem, 2019. 294(44): p. 16141-16151. http://doi.org/10.1074/jbc.RA119.010202
259.
Reis, R. A. G., Salvi, F., Williams, I., Gadda, G., Kinetic Investigation of a Presumed Nitronate Monooxygenase from Pseudomonas aeruginosa PAO1 Establishes a New Class of NAD(P)H:Quinone Reductases. Biochemistry, 2019. 58(22): p. 2594-2607. http://doi.org/10.1021/acs.biochem.9b00207
260.
Chekan, J. R., Ongpipattanakul, C., Nair, S. K., Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Proc Natl Acad Sci U S A, 2019. 116(48): p. 24049-24055. http://doi.org/10.1073/pnas.1908364116
261.
Bruno, S., Coppola, D., di Prisco, G., Giordano, D., Verde, C., Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs, 2019. 17(10):. http://doi.org/10.3390/md17100544
262.
Xing, M., Wei, Y., Zhou, Y., Zhang, J., Lin, L., Hu, Y., Hua, G., N. Nanjaraj Urs A, , Liu, D., Wang, F., Guo, C., Tong, Y., Li, M., Liu, Y., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun, 2019. 10(1): p. 1609. http://doi.org/10.1038/s41467-019-09618-8
263.
Canu, N., Moutiez, M., Belin, P., Gondry, M., Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep, 2020. 37(3): p. 312-321. http://doi.org/10.1039/c9np00036d
264.
Rajendran, A., Vaidya, K., Mendoza, J., Bridwell-Rabb, J., Kamat, S. S., Functional Annotation of ABHD14B, an Orphan Serine Hydrolase Enzyme. Biochemistry, 2020. 59(2): p. 183-196. http://doi.org/10.1021/acs.biochem.9b00703
265.
Surger, M., Angelov, A., Liebl, W., Distribution and diversity of olefins and olefin-biosynthesis genes in Gram-positive bacteria. Biotechnol Biofuels, 2020. 13: p. 70. http://doi.org/10.1186/s13068-020-01706-y
266.
Rocker, A., Lacey, J. A., Belousoff, M. J., Wilksch, J. J., Strugnell, R. A., Davies, M. R., Lithgow, T., Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae. mBio, 2020. 11(2):. http://doi.org/10.1128/mBio.00603-20
267.
Fontenele, R. S., Salywon, A. M., Majure, L. C., Cobb, I. N., Bhaskara, A., Avalos-Calleros, J. A., Arguello-Astorga, G. R., Schmidlin, K., Khalifeh, A., Smith, K., Schreck, J., Lund, M. C., Kohler, M., Wojciechowski, M. F., Hodgson, W. C., Puente-Martinez, R., Van Doorslaer, K., Kumari, S., Verniere, C., Filloux, D., Roumagnac, P., Lefeuvre, P., Ribeiro, S. G., Kraberger, S., Martin, D. P., Varsani, A., A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses, 2020. 12(4):. http://doi.org/10.3390/v12040398
268.
Zhang, C., Chen, X., Orban, A., Shukal, S., Birk, F., Too, H. P., Ruhl, M., Agrocybe aegerita Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi. ACS Chem Biol, 2020. http://doi.org/10.1021/acschembio.0c00155
269.
Tararina, M. A., Allen, K. N., Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol, 2020. http://doi.org/10.1016/j.jmb.2020.03.007
270.
Jeoung, J. H., Martins, B. M., Dobbek, H., Double-Cubane [8Fe9S] Clusters: A Novel Nitrogenase-Related Cofactor in Biology. Chembiochem, 2020. http://doi.org/10.1002/cbic.202000016
271.
Ghebreamlak, S. M., Mansoorabadi, S. O., Divergent Members of the Nitrogenase Superfamily: Tetrapyrrole Biosynthesis and Beyond. Chembiochem, 2020. http://doi.org/10.1002/cbic.201900782
272.
Huddleston, J. P., Raushel, F. M., Functional Characterization of Cj1427, a Unique Ping-Pong Dehydrogenase Responsible for the Oxidation of GDP-d-glycero-alpha-d-manno-heptose in Campylobacter jejuni. Biochemistry, 2020. 59(13): p. 1328-1337. http://doi.org/10.1021/acs.biochem.0c00097
273.
Mukhopadhyay, R., Chacon, K. N., Jarvis, J. M., Talipov, M. R., Yukl, E. T., Structural insights into the mechanism of oxidative activation of heme-free H-NOX from Vibrio cholerae. Biochem J, 2020. 477(6): p. 1123-1136. http://doi.org/10.1042/BCJ20200124
274.
Waldern, J., Schiraldi, N. J., Belfort, M., Novikova, O., Bacterial group II intron genomic neighborhoods reflect survival strategies: hiding and hijacking. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa055
275.
Dhawi, F., Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sciences, 2020. 15(1): p. 68-78. http://doi.org/10.1515/biol-2020-0008
276.
Caetano, T., van der Donk, W., Mendo, S., Bacteroidetes can be a rich source of novel lanthipeptides: The case study of Pedobacter lusitanus. Microbiol Res, 2020. 235: p. 126441. http://doi.org/10.1016/j.micres.2020.126441
277.
Ding, W., Ji, X., Zhong, Y., Xu, K., Zhang, Q., Adenosylation reactions catalyzed by the radical S-adenosylmethionine superfamily enzymes. Curr Opin Chem Biol, 2020. 55: p. 86-95. http://doi.org/10.1016/j.cbpa.2020.01.007
278.
Li, J., Amatuni, A., Renata, H., Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr Opin Chem Biol, 2020. 55: p. 111-118. http://doi.org/10.1016/j.cbpa.2020.01.005
279.
Gorecki, K., McEvoy, M. M., Phylogenetic analysis reveals an ancient gene duplication as the origin of the MdtABC efflux pump. PLoS One, 2020. 15(2): p. e0228877. http://doi.org/10.1371/journal.pone.0228877
280.
Orton, J. P., Morales, M., Fontenele, R. S., Schmidlin, K., Kraberger, S., Leavitt, D. J., Webster, T. H., Wilson, M. A., Kusumi, K., Dolby, G. A., Varsani, A., Virus Discovery in Desert Tortoise Fecal Samples: Novel Circular Single-Stranded DNA Viruses. Viruses, 2020. 12(2):. http://doi.org/10.3390/v12020143
281.
Yun, B. R., Malik, A., Kim, S. B., Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene, 2020. 733: p. 144379. http://doi.org/10.1016/j.gene.2020.144379
282.
Steiningerova, L., Kamenik, Z., Gazak, R., Kadlcik, S., Bashiri, G., Man, P., Kuzma, M., Pavlikova, M., Janata, J., Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets. J Am Chem Soc, 2020. 142(7): p. 3440-3448. http://doi.org/10.1021/jacs.9b11234
283.
Huang, J. Q., Fang, X., Tian, X., Chen, P., Lin, J. L., Guo, X. X., Li, J. X., Fan, Z., Song, W. M., Chen, F. Y., Ahati, R., Wang, L. J., Zhao, Q., Martin, C., Chen, X. Y., Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol, 2020. 16(3): p. 250-256. http://doi.org/10.1038/s41589-019-0446-8
284.
Wang, Z., Tauzin, A. S., Laville, E., Tedesco, P., Letisse, F., Terrapon, N., Lepercq, P., Mercade, M., Potocki-Veronese, G., Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria. mSphere, 2020. 5(1):. http://doi.org/10.1128/mSphere.00771-19
285.
Dunbar, K. L., Dell, M., Gude, F., Hertweck, C., Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy. Proc Natl Acad Sci U S A, 2020. 117(16): p. 8850-8858. http://doi.org/10.1073/pnas.1918759117
286.
Thierbach, S., Sartor, P., Yucel, O., Fetzner, S., Efficient modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges. J Biotechnol, 2020. 308: p. 74-81. http://doi.org/10.1016/j.jbiotec.2019.11.015
287.
Zhu, D., Wei, Y., Yin, J., Liu, D., Ang, E. L., Zhao, H., Zhang, Y., A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium. Appl Environ Microbiol, 2020. 86(7):. http://doi.org/10.1128/AEM.02837-19
288.
Stack, T. M. M., Morrison, K. N., Dettmer, T. M., Wille, B., Kim, C., Joyce, R., Jermain, M., Naing, Y. T., Bhatti, K., Francisco, B. S., Carter, M. S., Gerlt, J. A., Characterization of an l-Ascorbate Catabolic Pathway with Unprecedented Enzymatic Transformations. J Am Chem Soc, 2020. 142(4): p. 1657-1661. http://doi.org/10.1021/jacs.9b09863
289.
Martinez-Rodriguez, S., Soriano-Maldonado, P., Gavira, J. A., N-succinylamino acid racemases: Enzymatic properties and biotechnological applications. Biochim Biophys Acta Proteins Proteom, 2020. 1868(4): p. 140377. http://doi.org/10.1016/j.bbapap.2020.140377
290.
Fang, Q., Maglangit, F., Wu, L., Ebel, R., Kyeremeh, K., Andersen, J. H., Annang, F., Perez-Moreno, G., Reyes, F., Deng, H., Signalling and Bioactive Metabolites from Streptomyces sp. RK44. Molecules, 2020. 25(3):. http://doi.org/10.3390/molecules25030460
291.
Bosch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., Piel, J., Landornamides, antiviral ornithine-containing ribosomal peptides discovered by proteusin mining. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.201916321
292.
Sekula, B., Ruszkowski, M., Dauter, Z., S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol, 2020. 151: p. 554-565. http://doi.org/10.1016/j.ijbiomac.2020.02.100
293.
Ueoka, R., Meoded, R. A., Gran-Scheuch, A., Bhushan, A., Fraaije, M. W., Piel, J., Genome Mining of Oxidation Modules in trans-Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.201916005
294.
Esch, R., Merkl, R., Conserved genomic neighborhood is a strong but no perfect indicator for a direct interaction of microbial gene products. BMC Bioinformatics, 2020. 21(1): p. 5. http://doi.org/10.1186/s12859-019-3200-z
295.
Athukoralage, J. S., McMahon, S. A., Zhang, C., Gruschow, S., Graham, S., Krupovic, M., Whitaker, R. J., Gloster, T. M., White, M. F., An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 2020. 577(7791): p. 572-575. http://doi.org/10.1038/s41586-019-1909-5
296.
Wang, B., Guo, F., Huang, C., Zhao, H., Unraveling the iterative type I polyketide synthases hidden in Streptomyces. Proc Natl Acad Sci U S A, 2020. 117(15): p. 8449-8454. http://doi.org/10.1073/pnas.1917664117
297.
Wu, H., Rebello, O., Crost, E. H., Owen, C. D., Walpole, S., Bennati-Granier, C., Ndeh, D., Monaco, S., Hicks, T., Colvile, A., Urbanowicz, P. A., Walsh, M. A., Angulo, J., Spencer, D. I. R., Juge, N., Fucosidases from the human gut symbiont Ruminococcus gnavus. Cell Mol Life Sci, 2020. http://doi.org/10.1007/s00018-020-03514-x
298.
Jia, B., Park, D., Hahn, Y., Jeon, C. O., Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes, 2020. http://doi.org/10.1080/19490976.2020.1748261
299.
Manck, L. E., Espinoza, J. L., Dupont, C. L., Barbeau, K. A., Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii. mSystems, 2020. 5(2):. http://doi.org/10.1128/mSystems.00070-20
300.
Jones, C. S., Sychantha, D., Howell, P. L., Clarke, A. J., Structural basis for the O-acetyltransferase function of the extracytoplasmic domain of OatA from Staphylococcus aureus. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.013108
301.
Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., Turnbaugh, P. J., A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host Microbe, 2020. http://doi.org/10.1016/j.chom.2020.04.006
302.
Suplatov, D., Sharapova, Y., Geraseva, E., Svedas, V., Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa276
303.
Williamson, A., Leiros, H. S., Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa307
304.
Wullich, S. C., Arranz San Martin, A., Fetzner, S., An alpha/beta-Hydrolase Fold Subfamily Comprising Pseudomonas Quinolone Signal-Cleaving Dioxygenases. Appl Environ Microbiol, 2020. 86(9):. http://doi.org/10.1128/AEM.00279-20
305.
Hon, J., Borko, S., Stourac, J., Prokop, Z., Zendulka, J., Bednar, D., Martinek, T., Damborsky, J., EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa372
306.
Wu, X., Zhou, H., Li, L., Wang, E., Zhou, X., Gu, Y., Wu, X., Shen, L., Zeng, W., Whole Genome Sequencing and Comparative Genomic Analyses of Lysinibacillus pakistanensis LZH-9, a Halotolerant Strain with Excellent COD Removal Capability. Microorganisms, 2020. 8(5):. http://doi.org/10.3390/microorganisms8050716
307.
Santos, C. R., Costa, P., Vieira, P. S., Gonzalez, S. E. T., Correa, T. L. R., Lima, E. A., Mandelli, F., Pirolla, R. A. S., Domingues, M. N., Cabral, L., Martins, M. P., Cordeiro, R. L., Junior, A. T., Souza, B. P., Prates, E. T., Gozzo, F. C., Persinoti, G. F., Skaf, M. S., Murakami, M. T., Structural insights into beta-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol, 2020. http://doi.org/10.1038/s41589-020-0554-5
308.
Wang, J., Dai, W., Li, J., Xie, R., Dunstan, R. A., Stubenrauch, C., Zhang, Y., Lithgow, T., PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa432
309.
ShylajaNaciyar, M., Karthick, L., Prakasam, P. A., Deviram, G., Uma, L., Prabaharan, D., Saha, S. K., Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms, 2020. 8(5):. http://doi.org/10.3390/microorganisms8050712
310.
Campbell, I. J., Olmos, J. L. Jr., Xu, W., Kahanda, D., Atkinson, J. T., Sparks, O. N., Miller, M. D., Phillips, G. N. Jr., Bennett, G. N., Silberg, J. J., Prochlorococcus phage ferredoxin: Structural characterization and electron transfer to cyanobacterial sulfite reductases. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.013501
311.
Lukowski, A. L., Liu, J., Bridwell-Rabb, J., Narayan, A. R. H., Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases. Nat Commun, 2020. 11(1): p. 2991. http://doi.org/10.1038/s41467-020-16729-0
312.
Sun, S., Pandelia, M. E., The HD-[HD-GYP] Phosphodiesterases; Activities and Evolutionary Diversification within the HD-GYP family. Biochemistry, 2020. http://doi.org/10.1021/acs.biochem.0c00257
313.
Ma, S., Zhang, Q., Linaridin natural products. Nat Prod Rep, 2020. http://doi.org/10.1039/c9np00074g
314.
Mabanglo, M. F., Huddleston, J. P., Mukherjee, K., Taylor, Z. W., Raushel, F. M., Structure and Reaction Mechanism of YcjR, an Epimerase That Facilitates the Interconversion of d-Gulosides to d-Glucosides in Escherichia coli. Biochemistry, 2020. 59(22): p. 2069-2077. http://doi.org/10.1021/acs.biochem.0c00334
315.
Grzechowiak, M., Sliwiak, J., Jaskolski, M., Ruszkowski, M., Structural Studies of Glutamate Dehydrogenase (Isoform 1) from Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. Front Plant Sci, 2020. 11:754:. http://doi.org/10.3389/fpls.2020.00754
316.
Perfumo, A., Freiherr von Sass, G. J., Nordmann, E. L., Budisa, N., Wagner, D., Discovery and Characterization of a New Cold-Active Protease From an Extremophilic Bacterium via Comparative Genome Analysis and in vitro Expression. Front Microbiol, 2020. 11: p. 881. http://doi.org/10.3389/fmicb.2020.00881
317.
Liu, J., Wei, Y., Lin, L., Teng, L., Yin, J., Lu, Q., Chen, J., Zheng, Y., Li, Y., Xu, R., Zhai, W., Liu, Y., Liu, Y., Cao, P., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A, 2020. http://doi.org/10.1073/pnas.2003434117
318.
Ly, L. K., Rowles, J. L. 3rd, Paul, H. M., Alves, J. M. P., Yemm, C., Wolf, P. M., Devendran, S., Hudson, M. E., Morris, D. J., Erdman, J. W. Jr., Ridlon, J. M., Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol, 2020. 199: p. 105567. http://doi.org/10.1016/j.jsbmb.2019.105567
319.
Niehs, S. P., Kumpfmuller, J., Dose, B., Little, R. F., Ishida, K., Florez, L. V., Kaltenpoth, M., Hertweck, C., Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.202005711
320.
Li, A., Laville, E., Tarquis, L., Lombard, V., Ropartz, D., Terrapon, N., Henrissat, B., Guieysse, D., Esque, J., Durand, J., Morgavi, D. P., Potocki-Veronese, G., Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Microb Genom, 2020. http://doi.org/10.1099/mgen.0.000404
321.
Bleckwedel, J., Mohamed, F., Mozzi, F., Raya, R. R., Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol, 2020. http://doi.org/10.1007/s00253-020-10776-9
322.
Raut, P., Glass, J. B., Lieberman, R. L., Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins, 2020. http://doi.org/10.1002/prot.26009
323.
Le Chevalier, F., Correia, I., Matheron, L., Babin, M., Moutiez, M., Canu, N., Gondry, M., Lequin, O., Belin, P., In vivo characterization of the activities of novel cyclodipeptide oxidases: new tools for increasing chemical diversity of bioproduced 2,5-diketopiperazines in Escherichia coli. Microb Cell Fact, 2020. 19(1): p. 178. http://doi.org/10.1186/s12934-020-01432-y
324.
Foflonker, F., Blaby-Haas, C. E., Co-locality to co-functionality: Eukaryotic gene neighborhoods as a resource for function discovery. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa221
325.
Hecht, N., Monteil, C. L., Perriere, G., Vishkautzan, M., Gur, E., Exploring protein space: From hydrolase to ligase by substitution. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa215
326.
Bushin, L. B., Covington, B. C., Rued, B. E., Federle, M. J., Seyedsayamdost, M. R., Discovery and Biosynthesis of Streptosactin, a Sactipeptide with an Alternative Topology Encoded by Commensal Bacteria in the Human Microbiome. J Am Chem Soc, 2020. http://doi.org/10.1021/jacs.0c05546
327.
Vogt, M. S., Schmitz, G. F., Varon Silva, D., Mosch, H. U., Essen, L. O., Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls. Proc Natl Acad Sci U S A, 2020. 117(36): p. 22061-22067. http://doi.org/10.1073/pnas.2010661117
328.
Morgan, K. T., Zheng, J., McCafferty, D., Discovery of Six Ramoplanin Family Gene Clusters and the Lipoglycodepsipeptide Chersinamycin. Chembiochem, 2020. http://doi.org/10.1002/cbic.202000555
329.
Prahlad, J., Yuan, Y., Lin, J., Chang, C. W., Iwata-Reuyl, D., Liu, Y., de Crecy-Lagard, V., Wilson, M. A., The DUF328 family member YaaA is a DNA-binding protein with a novel fold. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.015055
330.
Schneider, N. O., Tassoulas, L. J., Zeng, D., Laseke, A. J., Reiter, N. J., Wackett, L. P., Maurice, M. S., Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry, 2020. 59(35): p. 3258-3270. http://doi.org/10.1021/acs.biochem.0c00537
331.
Conte, J. V., Frantom, P. A., Biochemical characterization of 2-phosphinomethylmalate synthase from Streptomyces hygroscopicus: A member of the DRE-TIM metallolyase superfamily. Arch Biochem Biophys, 2020. 691: p. 108489. http://doi.org/10.1016/j.abb.2020.108489
332.
Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La Rosa, S. L., Solden, L. M., Liu, P., Narrowe, A. B., Rodriguez-Ramos, J., Bolduc, B., Gazitua, M. C., Daly, R. A., Smith, G. J., Vik, D. R., Pope, P. B., Sullivan, M. B., Roux, S., Wrighton, K. C., DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res, 2020. 48(16): p. 8883-8900. http://doi.org/10.1093/nar/gkaa621
333.
Morey, J. R., Kehl-Fie, T. E., Bioinformatic Mapping of Opine-Like Zincophore Biosynthesis in Bacteria. mSystems, 2020. 5(4):. http://doi.org/10.1128/mSystems.00554-20
334.
Wang, F., Wei, Y., Lu, Q., Ang, E. L., Zhao, H., Zhang, Y., A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens. Biosci Rep, 2020. 40(7):. http://doi.org/10.1042/BSR20201642
335.
Marques, W. L., Anderson, L. A., Sandoval, L., Hicks, M. A., Prather, K. L. J., Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae. Enzyme Microb Technol, 2020. 140: p. 109623. http://doi.org/10.1016/j.enzmictec.2020.109623
336.
Levy, H., Fontenele, R. S., Harding, C., Suazo, C., Kraberger, S., Schmidlin, K., Djurhuus, A., Black, C. E., Hart, T., Smith, A. L., Varsani, A., Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses, 2020. 12(9):. http://doi.org/10.3390/v12091029
337.
Shi, Q., Wang, H., Liu, J., Li, S., Guo, J., Li, H., Jia, X., Huo, H., Zheng, Z., You, S., Qin, B., Old yellow enzymes: structures and structure-guided engineering for stereocomplementary bioreduction. Appl Microbiol Biotechnol, 2020. 104(19): p. 8155-8170. http://doi.org/10.1007/s00253-020-10845-z
338.
Nguyen, T. Q. N., Tooh, Y. W., Sugiyama, R., Nguyen, T. P. D., Purushothaman, M., Leow, L. C., Hanif, K., Yong, R. H. S., Agatha, I., Winnerdy, F. R., Gugger, M., Phan, A. T., Morinaka, B. I., Post-translational formation of strained cyclophanes in bacteria. Nat Chem, 2020. http://doi.org/10.1038/s41557-020-0519-z
339.
Vobruba, S., Kamenik, Z., Kadlcik, S., Janata, J., N-Deacetylation in Lincosamide Biosynthesis is Catalyzed byy a TldD/PmbA Family Protein. ACS Chem Biol, 2020. 15(8): p. 2048-2054. http://doi.org/10.1021/acschembio.0c00224

If you use the EFI web tools, please cite us.

Click here to contact us for help, reporting issues, or suggestions.