EFI - Training Resources: Training and Publications

This web resource is supported by a Research Resource from the National Institute of General Medical Sciences (R24GM141196-01).
The tools are available without charge or license to both academic and commercial users.

833 Journal Articles

1.
Wichelecki, D. J., Balthazor, B. M., Chau, A. C., Vetting, M. W., Fedorov, A. A., Fedorov, E. V., Lukk, T., Patskovsky, Y. V., Stead, M. B., Hillerich, B. S., Seidel, R. D., Almo, S. C., Gerlt, J. A., Discovery of function in the enolase superfamily: D-mannonate and d-gluconate dehydratases in the D-mannonate dehydratase subgroup. Biochemistry, 2014. 53(16): p. 2722-31. http://doi.org/10.1021/bi500264p
2.
Wichelecki, D. J., Graff, D. C., Al-Obaidi, N., Almo, S. C., Gerlt, J. A., Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily. Biochemistry, 2014. 53(25): p. 4087-9. http://doi.org/10.1021/bi500683x
3.
Dunbar, K. L., Chekan, J. R., Cox, C. L., Burkhart, B. J., Nair, S. K., Mitchell, D. A., Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol, 2014. 10(10): p. 823-9. http://doi.org/10.1038/nchembio.1608
4.
Vetting, M. W., Al-Obaidi, N., Zhao, S., San Francisco, B., Kim, J., Wichelecki, D. J., Bouvier, J. T., Solbiati, J. O., Vu, H., Zhang, X., Rodionov, D. A., Love, J. D., Hillerich, B. S., Seidel, R. D., Quinn, R. J., Osterman, A. L., Cronan, J. E., Jacobson, M. P., Gerlt, J. A., Almo, S. C., Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry, 2015. 54(3): p. 909-31. http://doi.org/10.1021/bi501388y
5.
Rao, G., O'Dowd, B., Li, J., Wang, K., Oldfield, E., IspH–RPS1 and IspH–UbiA:“Rosetta stone” proteins. Chemical science, 2015. 6(12): p. 6813-6822. http://doi.org/10.1039/C5SC02600H
6.
Roche, D., Brackenridge, D., McGuffin, L., Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods. International journal of molecular sciences, 2015. 16(12): p. 29829-29842. http://doi.org/10.3390/ijms161226202
7.
San Francisco, B., Zhang, X., Whalen, K., Gerlt, J., A Novel Pathway for Bacterial Ethanolamine Metabolism. The FASEB Journal, 2015. 29(1_supplement): p. 573.45.
8.
Anders, K., Essen, L., The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful. Current Opinion in Structural Biology, 2015. 35: p. 7-16. http://doi.org/10.1016/j.sbi.2015.07.005
9.
Zhang, X., Kumar, R., Vetting, M. W., Zhao, S., Jacobson, M. P., Almo, S. C., Gerlt, J. A., A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily. J Am Chem Soc, 2015. 137(4): p. 1388-91. http://doi.org/10.1021/ja5103986
10.
Celis, A. I., DuBois, J. L., Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys, 2015. 574: p. 3-17. http://doi.org/10.1016/j.abb.2015.03.004
11.
Latham, J. A., Iavarone, A. T., Barr, I., Juthani, P. V., Klinman, J. P., PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem, 2015. 290(20): p. 12908-18. http://doi.org/10.1074/jbc.M115.646521
12.
Liu, F., Geng, J., Gumpper, R. H., Barman, A., Davis, I., Ozarowski, A., Hamelberg, D., Liu, A., An Iron Reservoir to the Catalytic Metal: THE RUBREDOXIN IRON IN AN EXTRADIOL DIOXYGENASE. J Biol Chem, 2015. 290(25): p. 15621-34. http://doi.org/10.1074/jbc.M115.650259
13.
Burkhart, B. J., Hudson, G. A., Dunbar, K. L., Mitchell, D. A., A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol, 2015. 11(8): p. 564-70. http://doi.org/10.1038/nchembio.1856
14.
Cox, C. L., Doroghazi, J. R., Mitchell, D. A., The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics, 2015. 16(1): p. 778. http://doi.org/10.1186/s12864-015-2008-0
15.
Wichelecki, D. J., Vetting, M. W., Chou, L., Al-Obaidi, N., Bouvier, J. T., Almo, S. C., Gerlt, J. A., ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. J Biol Chem, 2015. 290(48): p. 28963-76. http://doi.org/10.1074/jbc.M115.686857
16.
Petronikolou, N., Nair, S. K., Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel. Chem Biol, 2015. 22(11): p. 1480-1490. http://doi.org/10.1016/j.chembiol.2015.09.011
17.
Huang, H., Carter, M. S., Vetting, M. W., Al-Obaidi, N., Patskovsky, Y., Almo, S. C., Gerlt, J. A., A General Strategy for the Discovery of Metabolic Pathways: d-Threitol, l-Threitol, and Erythritol Utilization in Mycobacterium smegmatis. J Am Chem Soc, 2015. 137(46): p. 14570-3. http://doi.org/10.1021/jacs.5b08968
18.
Colin, P. Y., Kintses, B., Gielen, F., Miton, C. M., Fischer, G., Mohamed, M. F., Hyvonen, M., Morgavi, D. P., Janssen, D. B., Hollfelder, F., Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun, 2015. 6: p. 10008. http://doi.org/10.1038/ncomms10008
19.
Molloy, E. M., Tietz, J. I., Blair, P. M., Mitchell, D. A., Biological characterization of the hygrobafilomycin antibiotic JBIR-100 and bioinformatic insights into the hygrolide family of natural products. Bioorganic & medicinal chemistry, 2016. 24(24): p. 6276-6290. http://doi.org/10.1016/j.bmc.2016.05.021
20.
Plach, M. G., Reisinger, B., Sterner, R., Merkl, R., Long-term persistence of bi-functionality contributes to the robustness of microbial life through exaptation. PLoS genetics, 2016. 12(1): p. e1005836. http://doi.org/10.1371/journal.pgen.1005836
21.
Thotsaporn, K., Tinikul, R., Maenpuen, S., Phonbuppha, J., Watthaisong, P., Chenprakhon, P., Chaiyen, P., Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. Journal of Molecular Catalysis B: Enzymatic, 2016. 134: p. 353-366. http://doi.org/10.1016/j.molcatb.2016.09.003
22.
Kumar, G., Johnson, J. L., Frantom, P. A., Improving functional annotation in the DRE-TIM metallolyase superfamily through identification of active site fingerprints. Biochemistry, 2016. 55(12): p. 1863-1872. http://doi.org/10.1021/acs.biochem.5b01193
23.
Ahmed, F. H., Mohamed, A. E., Carr, P. D., Lee, B. M., Condic‐Jurkic, K., O'Mara, M. L., Jackson, C. J., Rv2074 is a novel F420H2‐dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Science, 2016. 25(9): p. 1692-1709. http://doi.org/10.1002/pro.2975
24.
Atkinson, J. T., Campbell, I., Bennett, G. N., Silberg, J. J., Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry, 2016. 55(51): p. 7047-7064. http://doi.org/10.1021/acs.biochem.6b00831
25.
Ji, X., Li, Y., Xie, L., Lu, H., Ding, W., Zhang, Q., Expanding radical SAM chemistry by using radical addition reactions and SAM analogues. Angewandte Chemie International Edition, 2016. 55(39): p. 11845-11848. http://doi.org/10.1002/anie.201605917
26.
Zhang, X., Carter, M. S., Vetting, M. W., San Francisco, B., Zhao, S., Al-Obaidi, N. F., Solbiati, J. O., Thiaville, J. J., de Crécy-Lagard, V., Jacobson, M. P., Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proceedings of the National Academy of Sciences, 2016. 113(29): p. E4161-E4169. http://doi.org/10.1073/pnas.1605546113
27.
Tietz, J.I., Mitchell, D.A., Using genomics for natural product structure elucidation. Current topics in medicinal chemistry, 2016. 16(15): p. 1645-1694. http://doi.org/10.2174/1568026616666151012111439
28.
Prunetti, L., El Y. B., Schiavon, C. R., Kirkpatrick, E., Huang, L., Bailly, M., El B. M., Harrison, K., Gregory 3rd, J. F., Fiehn, O., Evidence that COG0325 proteins are involved in PLP homeostasis. Microbiology, 2016. 162(4): p. 694-706. http://doi.org/10.1099/mic.0.000255
29.
Gerlt, J. A., Tools and strategies for discovering novel enzymes and metabolic pathways. Perspectives in science, 2016. 9: p. 24-32. http://doi.org/10.1016/j.pisc.2016.07.001
30.
Colabroy, K. L., Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. Biochim Biophys Acta, 2016. 1864(6): p. 724-737. http://doi.org/10.1016/j.bbapap.2016.03.001
31.
Ding, W., Li, Q., Jia, Y., Ji, X., Qianzhu, H., Zhang, Q., Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem, 2016. 17(13): p. 1191-7. http://doi.org/10.1002/cbic.201600107
32.
Ghodge, S. V., Biernat, K. A., Bassett, S. J., Redinbo, M. R., Bowers, A. A., Post-translational Claisen Condensation and Decarboxylation en Route to the Bicyclic Core of Pantocin A. J Am Chem Soc, 2016. 138(17): p. 5487-90. http://doi.org/10.1021/jacs.5b13529
33.
Machovina, M. M., Usselman, R. J., DuBois, J. L., Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J Biol Chem, 2016. 291(34): p. 17816-28. http://doi.org/10.1074/jbc.M116.730051
34.
Rao, G., Oldfield, E., Structure and Function of Four Classes of the 4Fe-4S Protein, IspH. Biochemistry, 2016. 55(29): p. 4119-29. http://doi.org/10.1021/acs.biochem.6b00474
35.
Desai, J., Liu, Y. L., Wei, H., Liu, W., Ko, T. P., Guo, R. T., Oldfield, E., Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase. ChemMedChem, 2016. 11(17): p. 1915-23. http://doi.org/10.1002/cmdc.201600311
36.
Ji, X., Liu, W. Q., Yuan, S., Yin, Y., Ding, W., Zhang, Q., Mechanistic study of the radical SAM-dependent amine dehydrogenation reactions. Chem Commun (Camb), 2016. 52(69): p. 10555-8. http://doi.org/10.1039/c6cc05661j
37.
Zallot, R., Harrison, K. J., Kolaczkowski, B., de Crecy-Lagard, V., Functional Annotations of Paralogs: A Blessing and a Curse. Life (Basel), 2016. 6(3): p. 39. http://doi.org/10.3390/life6030039
38.
Li, D., Moorman, R., Vanhercke, T., Petrie, J., Singh, S., Jackson, C. J., Classification and substrate head-group specificity of membrane fatty acid desaturases. Comput Struct Biotechnol J, 2016. 14: p. 341-349. http://doi.org/10.1016/j.csbj.2016.08.003
39.
Davey, L., Halperin, S. A., Lee, S. F., Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol, 2016. 24(11): p. 902-915. http://doi.org/10.1016/j.tim.2016.06.010
40.
Maxson, T., Tietz, J. I., Hudson, G. A., Guo, X. R., Tai, H. C., Mitchell, D. A., Targeting Reactive Carbonyls for Identifying Natural Products and Their Biosynthetic Origins. J Am Chem Soc, 2016. 138(46): p. 15157-15166. http://doi.org/10.1021/jacs.6b06848
41.
Baier, F., Copp, J. N., Tokuriki, N., Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships. Biochemistry, 2016. 55(46): p. 6375-6388. http://doi.org/10.1021/acs.biochem.6b00723
42.
Dassama, L. M., Kenney, G. E., Ro, S. Y., Zielazinski, E. L., Rosenzweig, A. C., Methanobactin transport machinery. Proc Natl Acad Sci U S A, 2016. 113(46): p. 13027-13032. http://doi.org/10.1073/pnas.1603578113
43.
Hao, Y., Pierce, E., Roe, D., Morita, M., McIntosh, J. A., Agarwal, V., Cheatham, T. E., 3rd, Schmidt, E. W., Nair, S. K., Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. Proc Natl Acad Sci U S A, 2016. 113(49): p. 14037-14042. http://doi.org/10.1073/pnas.1609869113
44.
Jia, B., Jia, X., Kim, K. H., Jeon, C. O., Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochim Biophys Acta Gen Subj, 2017. 1861(2): p. 323-334. http://doi.org/10.1016/j.bbagen.2016.12.001
45.
Chekan, J. R., Koos, J. D., Zong, C., Maksimov, M. O., Link, A. J., Nair, S. K., Structure of the Lasso Peptide Isopeptidase Identifies a Topology for Processing Threaded Substrates. J Am Chem Soc, 2016. 138(50): p. 16452-16458. http://doi.org/10.1021/jacs.6b10389
46.
Bhandari, D. M., Fedoseyenko, D., Begley, T. P., Tryptophan Lyase (NosL): A Cornucopia of 5'-Deoxyadenosyl Radical Mediated Transformations. J Am Chem Soc, 2016. 138(50): p. 16184-16187. http://doi.org/10.1021/jacs.6b06139
47.
Ortega, M. A., Cogan, D. P., Mukherjee, S., Garg, N., Li, B., Thibodeaux, G. N., Maffioli, S. I., Donadio, S., Sosio, M., Escano, J., Smith, L., Nair, S. K., van der Donk, W. A., Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis. ACS Chem Biol, 2017. 12(2): p. 548-557. http://doi.org/10.1021/acschembio.6b01031
48.
McFarland, B. J., Online Tools for Teaching Large Laboratory Courses: How the GENI Website Facilitates Authentic Research. Teaching and the Internet: The Application of Web Apps, Networking, and Online Tech for Chemistry Education, 2017. http://doi.org/10.1021/bk-2017-1270.ch008
49.
Hopkins, D. H., Fraser, N. J., Mabbitt, P. D., Carr, P. D., Oakeshott, J. G., Jackson, C. J., Structure of an insecticide sequestering carboxylesterase from the disease vector Culex quinquefasciatus: what makes an enzyme a good insecticide sponge?. Biochemistry, 2017. 56(41): p. 5512-5525. http://doi.org/10.1021/acs.biochem.7b00774
50.
Holliday, G. L., Brown, S. D., Akiva, E., Mischel, D., Hicks, M. A., Morris, J. H., Huang, C. C., Meng, E. C., Pegg, S. C., Ferrin, T. E., Biocuration in the structure–function linkage database: the anatomy of a superfamily. Database, 2017. 2017. http://doi.org/10.1093/database/bax045
51.
Wang, H., Chen, X., Li, C., Liu, Y., Yang, F., Wang, C., Sequence-based prediction of cysteine reactivity using machine learning. Biochemistry, 2017. 57(4): p. 451-460. http://doi.org/10.1021/acs.biochem.7b00897
52.
Lohans, C. T., Wang, D. Y., Wang, J., Hamed, R. B., Schofield, C. J., Crotonases: nature’s exceedingly convertible catalysts. ACS Catalysis, 2017. 7(10): p. 6587-6599. http://doi.org/10.1021/acscatal.7b01699
53.
Orth, C., Niemann, N., Hennig, L., Essen, L., Batschauer, A., Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. Journal of Biological Chemistry, 2017. 292(31): p. 12906-12920. http://doi.org/10.1074/jbc.M117.788869
54.
Holliday, G. L., Davidson, R., Akiva, E., Babbitt, P. C., Evaluating functional annotations of enzymes using the gene ontology. The Gene Ontology Handbook, 2017. http://doi.org/10.1007/978-1-4939-3743-1_9
55.
Wang, M., Moynié, L., Harrison, P. J., Kelly, V., Piper, A., Naismith, J. H., Campopiano, D. J., Using the pimeloyl-CoA synthetase adenylation fold to synthesize fatty acid thioesters. Nature chemical biology, 2017. 13(6): p. 660. http://doi.org/10.1038/nchembio.2361
56.
Bearne, S. L., The interdigitating loop of the enolase superfamily as a specificity binding determinant or ‘flying buttress’. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2017. 1865(5): p. 619-630. http://doi.org/10.1016/j.bbapap.2017.02.006
57.
Zallot, R., Yuan, Y., de Crécy-Lagard, V., The Escherichia coli COG1738 member YhhQ is involved in 7-cyanodeazaguanine (preQ0) transport. Biomolecules, 2017. 7(1): p. 12. http://doi.org/10.3390/biom7010012
58.
Ney, B., Ahmed, F. H., Carere, C. R., Biswas, A., Warden, A. C., Morales, S. E., Pandey, G., Watt, S. J., Oakeshott, J. G., Taylor, M. C., The methanogenic redox cofactor F 420 is widely synthesized by aerobic soil bacteria. The ISME journal, 2017. 11(1): p. 125. http://doi.org/10.1038/ismej.2016.100
59.
Cogan, D. P., Hudson, G. A., Zhang, Z., Pogorelov, T. V., van der Donk, W. A., Mitchell, D. A., Nair, S. K., Structural insights into enzymatic [4+ 2] aza-cycloaddition in thiopeptide antibiotic biosynthesis. Proceedings of the National Academy of Sciences, 2017. 114(49): p. 12928-12933. http://doi.org/10.1073/pnas.1716035114
60.
Macaisne, N., Liu, F., Scornet, D., Peters, A. F., Lipinska, A., Perrineau, M. M., Henry, A., Strittmatter, M., Coelho, S. M., Cock, J. M., The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes. Development, 2017. 144(3): p. 409-418. http://doi.org/10.1242/dev.141523
61.
Repka, L. M., Chekan, J. R., Nair, S. K., van der Donk, W. A., Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev, 2017. 117(8): p. 5457-5520. http://doi.org/10.1021/acs.chemrev.6b00591
62.
Pimviriyakul, P., Thotsaporn, K., Sucharitakul, J., Chaiyen, P., Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA. J Biol Chem, 2017. 292(12): p. 4818-4832. http://doi.org/10.1074/jbc.M116.774448
63.
Erb, T. J., Jones, P. R., Bar-Even, A., Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol, 2017. 37: p. 56-62. http://doi.org/10.1016/j.cbpa.2016.12.023
64.
Pornsuwan, S., Maenpuen, S., Kamutira, P., Watthaisong, P., Thotsaporn, K., Tongsook, C., Juttulapa, M., Nijvipakul, S., Chaiyen, P., 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover. PLoS One, 2017. 12(2): p. e0171135. http://doi.org/10.1371/journal.pone.0171135
65.
Glasner, M. E., Finding enzymes in the gut metagenome. Science, 2017. 355(6325): p. 577-578. http://doi.org/10.1126/science.aam7446
66.
Levin, B. J., Huang, Y. Y., Peck, S. C., Wei, Y., Martinez-Del C. A., Marks, J. A., Franzosa, E. A., Huttenhower, C., Balskus, E. P., A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science, 2017. 355(6325): p. eaai8386. http://doi.org/10.1126/science.aai8386
67.
Jia, B., Jia, X., Hyun K. K., Ji P. Z., Kang, M. S., Ok J. C., Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway. Sci Rep, 2017. 7: p. 43489. http://doi.org/10.1038/srep43489
68.
Tietz, J. I., Schwalen, C. J., Patel, P. S., Maxson, T., Blair, P. M., Tai, H. C., Zakai, U. I., Mitchell, D. A., A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol, 2017. 13(5): p. 470-478. http://doi.org/10.1038/nchembio.2319
69.
Giessen, T. W., Silver, P. A., Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat Microbiol, 2017. 2(6): p. 17029. http://doi.org/10.1038/nmicrobiol.2017.29
70.
Hetrick, K. J., van der Donk, W. A., Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol, 2017. 38: p. 36-44. http://doi.org/10.1016/j.cbpa.2017.02.005
71.
Schwalen, C. J., Feng, X., Liu, W., O. D. B., Ko, T. P., Shin, C. J., Guo, R. T., Mitchell, D. A., Oldfield, E., Head-to-Head Prenyl Synthases in Pathogenic Bacteria. Chembiochem, 2017. 18(11): p. 985-991. http://doi.org/10.1002/cbic.201700099
72.
Ahmed, M. N., Reyna-Gonzalez, E., Schmid, B., Wiebach, V., Sussmuth, R. D., Dittmann, E., Fewer, D. P., Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors. ACS Chem Biol, 2017. 12(6): p. 1538-1546. http://doi.org/10.1021/acschembio.7b00124
73.
Estrada, P., Manandhar, M., Dong, S. H., Deveryshetty, J., Agarwal, V., Cronan, J. E., Nair, S. K., The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol, 2017. 13(6): p. 668-674. http://doi.org/10.1038/nchembio.2359
74.
Haase, E. M., Kou, Y., Sabharwal, A., Liao, Y. C., Lan, T., Lindqvist, C., Scannapieco, F. A., Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol, 2017. 17(1): p. 94. http://doi.org/10.1186/s12866-017-1005-7
75.
Blin, K., Wolf, T., Chevrette, M. G., Lu, X., Schwalen, C. J., Kautsar, S. A., Suarez D. H. G., de Los Santos, E. L. C., Kim, H. U., Nave, M., Dickschat, J. S., Mitchell, D. A., Shelest, E., Breitling, R., Takano, E., Lee, S. Y., Weber, T., Medema, M. H., antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res, 2017. 45(W1): p. W36-W41. http://doi.org/10.1093/nar/gkx319
76.
Kandlinger, F., Plach, M. G., Merkl, R., AGeNNT: annotation of enzyme families by means of refined neighborhood networks. BMC Bioinformatics, 2017. 18(1): p. 274. http://doi.org/10.1186/s12859-017-1689-6
77.
Wagner, D. T., Zeng, J., Bailey, C. B., Gay, D. C., Yuan, F., Manion, H. R., Keatinge-Clay, A. T., Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure, 2017. 25(7): p. 1045-1055 e2. http://doi.org/10.1016/j.str.2017.05.011
78.
Benjdia, A., Guillot, A., Ruffie, P., Leprince, J., Berteau, O., Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat Chem, 2017. 9(7): p. 698-707. http://doi.org/10.1038/nchem.2714
79.
Koppel, N., Maini R. V., Balskus, E. P., Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017. 356(6344): p. eaag2770. http://doi.org/10.1126/science.aag2770
80.
Zhong, G., Zhao, Q., Zhang, Q., Liu, W., 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of gamma-glutamyltranspeptidase homolog for C-C bond cleavage. Nat Commun, 2017. 8: p. 16109. http://doi.org/10.1038/ncomms16109
81.
Chowdhary, J., Loffler, F. E., Smith, J. C., Community detection in sequence similarity networks based on attribute clustering. PLoS One, 2017. 12(7): p. e0178650. http://doi.org/10.1371/journal.pone.0178650
82.
Essen, L. O., Franz, S., Banerjee, A., Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. J Plant Physiol, 2017. 217: p. 27-37. http://doi.org/10.1016/j.jplph.2017.07.005
83.
Rudolf, J. D., Chang, C. Y., Ma, M., Shen, B., Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep, 2017. 34(9): p. 1141-1172. http://doi.org/10.1039/c7np00034k
84.
Dong, S. H., Frane, N. D., Christensen, Q. H., Greenberg, E. P., Nagarajan, R., Nair, S. K., Molecular basis for the substrate specificity of quorum signal synthases. Proc Natl Acad Sci U S A, 2017. 114(34): p. 9092-9097. http://doi.org/10.1073/pnas.1705400114
85.
Gerlt, J. A., Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry, 2017. 56(33): p. 4293-4308. http://doi.org/10.1021/acs.biochem.7b00614
86.
Jia, B., Tang, K., Chun, B. H., Jeon, C. O., Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa. Biochim Biophys Acta Gen Subj, 2017. 1861(11 Pt A): p. 2922-2933. http://doi.org/10.1016/j.bbagen.2017.08.019
87.
Liao, C., Seebeck, F. P., Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Chembiochem, 2017. 18(21): p. 2115-2118. http://doi.org/10.1002/cbic.201700354
88.
Ding, W., Ji, W., Wu, Y., Wu, R., Liu, W. Q., Mo, T., Zhao, J., Ma, X., Zhang, W., Xu, P., Deng, Z., Tang, B., Yu, Y., Zhang, Q., Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ. Nat Commun, 2017. 8(1): p. 437. http://doi.org/10.1038/s41467-017-00439-1
89.
Plach, M. G., Semmelmann, F., Busch, F., Busch, M., Heizinger, L., Wysocki, V. H., Merkl, R., Sterner, R., Evolutionary diversification of protein-protein interactions by interface add-ons. Proc Natl Acad Sci U S A, 2017. 114(40): p. E8333-E8342. http://doi.org/10.1073/pnas.1707335114
90.
Grim, K. P., San Francisco, B., Radin, J. N., Brazel, E. B., Kelliher, J. L., Parraga S. P. K., Kim, P. C., McDevitt, C. A., Kehl-Fie, T. E., The Metallophore Staphylopine Enables Staphylococcus aureus To Compete with the Host for Zinc and Overcome Nutritional Immunity. mBio, 2017. 8(5): p. e01281-17. http://doi.org/10.1128/mBio.01281-17
91.
Yuan, H., Zhang, J., Cai, Y., Wu, S., Yang, K., Chan, H. C. S., Huang, W., Jin, W. B., Li, Y., Yin, Y., Igarashi, Y., Yuan, S., Zhou, J., Tang, G. L., GyrI-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection. Nat Commun, 2017. 8(1): p. 1485. http://doi.org/10.1038/s41467-017-01508-1
92.
Yan, X. F., Xin, L., Yen, J. T., Zeng, Y., Jin, S., Cheang, Q. W., Fong, R., Chiam, K. H., Liang, Z. X., Gao, Y. G., Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein. J Biol Chem, 2018. 293(1): p. 100-111. http://doi.org/10.1074/jbc.M117.815704
93.
Welsh, M. A., Taguchi, A., Schaefer, K., Van T. D., Lebreton, F., Gilmore, M. S., Kahne, D., Walker, S., Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J Am Chem Soc, 2017. 139(49): p. 17727-17730. http://doi.org/10.1021/jacs.7b10170
94.
Vazquez, R., Domenech, M., Iglesias-Bexiga, M., Menendez, M., Garcia, P., Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep, 2017. 7(1): p. 16506. http://doi.org/10.1038/s41598-017-16736-0
95.
Ji, X., Mandalapu, D., Cheng, J., Ding, W., Zhang, Q., Expanding the Chemistry of the Class C Radical SAM Methyltransferase NosN by Using an Allyl Analogue of SAM. Angewandte Chemie International Edition, 2018. 57(22): p. 6601-6604. http://doi.org/10.1002/anie.201712224
96.
Jeoung, J., Dobbek, H., ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster. Proceedings of the National Academy of Sciences, 2018. 115(12): p. 2994-2999. http://doi.org/10.1073/pnas.1720489115
97.
Qiu, B., Xia, B., Zhou, Q., Lu, Y., He, M., Hasegawa, K., Ma, Z., Zhang, F., Gu, L., Mao, Q., Succinate-acetate permease from Citrobacter koseri is an anion channel that unidirectionally translocates acetate. Cell research, 2018. 28(6): p. 644. http://doi.org/10.1038/s41422-018-0032-8
98.
Lei, L., Cherukuri, K. P., Alcolombri, U., Meltzer, D., Tawfik, D. S., The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of bona fide DMSP lyases as well as other enzymes with unknown function. Biochemistry, 2018. 57(24): p. 3364-3377. http://doi.org/10.1021/acs.biochem.8b00097
99.
Li, Y., Zhong, Z., Zhang, W., Qian, P., Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nature communications, 2018. 9(1): p. 3273. http://doi.org/10.1038/s41467-018-05781-6
100.
Dunkle, J. A., Bruno, M. R., Outten, F. W., Frantom, P. A., Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS. Biochemistry, 2018. 58(6): p. 687-696. http://doi.org/10.1021/acs.biochem.8b01122
101.
Bastard, K., Isabet, T., Stura, E. A., Legrand, P., Zaparucha, A., Structural studies based on two lysine dioxygenases with distinct regioselectivity brings insights into enzyme specificity within the clavaminate synthase-like family. Scientific reports, 2018. 8(1): p. 16587. http://doi.org/10.1038/s41598-018-34795-9
102.
Liu, D., Wei, Y., Liu, X., Zhou, Y., Jiang, L., Yin, J., Wang, F., Hu, Y., Urs, A. N. N., Liu, Y., Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nature communications, 2018. 9(1): p. 4224. http://doi.org/10.1038/s41467-018-06627-x.
103.
Ayikpoe, R., Salazar, J., Majestic, B., Latham, J. A., Mycofactocin biosynthesis proceeds through 3-amino-5-[(p-hydroxyphenyl) methyl]-4, 4-dimethyl-2-pyrrolidinone (AHDP); direct observation of MftE specificity toward MftA. Biochemistry, 2018. 57(37): p. 5379-5383. http://doi.org/10.1021/acs.biochem.8b00816
104.
Jiang, S., Network analysis of RAD51 proteins in Metazoa and the evolutionary relationships with their archaeal homologs. Frontiers in genetics, 2018. 9: p. 383. http://doi.org/10.3389/fgene.2018.00383
105.
Reichelt, R., Grohmann, D., Willkomm, S., A journey through the evolutionary diversification of archaeal Lsm and Hfq proteins. Emerging Topics in Life Sciences, 2018. 2(4): p. 647-657. http://doi.org/10.1042/etls20180034
106.
Punekar, N., Future of Enzymology: An Appraisal. ENZYMES: Catalysis, Kinetics and Mechanisms, 2018.
107.
Leong, R., Urano, D., Molecular Breeding for Plant Factory: Strategies and Technology. Smart Plant Factory, 2018. http://doi.org/10.1007/978-981-13-1065-2_19
108.
Ho, C. L., Tan, H. Q., Chua, K. J., Kang, A., Lim, K. H., Ling, K. L., Yew, W. S., Lee, Y. S., Thiery, J. P., Chang, M. W., Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng, 2018. 2(1): p. 27-37. http://doi.org/10.1038/s41551-017-0181-y
109.
Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., Xuan, Y. H., Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters. Front Plant Sci, 2017. 8: p. 2178. http://doi.org/10.3389/fpls.2017.02178
110.
Calhoun, S., Korczynska, M., Wichelecki, D. J., San Francisco, B., Zhao, S., Rodionov, D. A., Vetting, M. W., Al-Obaidi, N. F., Lin, H., O'Meara, M. J., Scott, D. A., Morris, J. H., Russel, D., Almo, S. C., Osterman, A. L., Gerlt, J. A., Jacobson, M. P., Shoichet, B. K., Sali, A., Prediction of enzymatic pathways by integrative pathway mapping. Elife, 2018. 7: p. e31097. http://doi.org/10.7554/eLife.31097
111.
Gilchrist, C. L. M., Li, H., Chooi, Y. H., Panning for gold in mould: can we increase the odds for fungal genome mining?. Org Biomol Chem, 2018. 16(10): p. 1620-1626. http://doi.org/10.1039/c7ob03127k
112.
Green, C. M., Novikova, O., Belfort, M., The dynamic intein landscape of eukaryotes. Mob DNA, 2018. 9(1): p. 4. http://doi.org/10.1186/s13100-018-0111-x
113.
Purohit, R., Ross, M. O., Batelu, S., Kusowski, A., Stemmler, T. L., Hoffman, B. M., Rosenzweig, A. C., Cu(+)-specific CopB transporter: Revising P1B-type ATPase classification. Proc Natl Acad Sci U S A, 2018. 115(9): p. 2108-2113. http://doi.org/10.1073/pnas.1721783115
114.
Hossain, G. S., Nadarajan, S. P., Zhang, L., Ng, T. K., Foo, J. L., Ling, H., Choi, W. J., Chang, M. W., Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms. Front Microbiol, 2018. 9: p. 155. http://doi.org/10.3389/fmicb.2018.00155
115.
Mahanta, N., Liu, A., Dong, S., Nair, S. K., Mitchell, D. A., Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proc Natl Acad Sci U S A, 2018. 115(12): p. 3030-3035. http://doi.org/10.1073/pnas.1722324115
116.
Kenney, G. E., Dassama, L. M. K., Pandelia, M. E., Gizzi, A. S., Martinie, R. J., Gao, P., DeHart, C. J., Schachner, L. F., Skinner, O. S., Ro, S. Y., Zhu, X., Sadek, M., Thomas, P. M., Almo, S. C., Bollinger, J. M., J., Krebs, C., Kelleher, N. L., Rosenzweig, A. C., The biosynthesis of methanobactin. Science, 2018. 359(6382): p. 1411-1416. http://doi.org/10.1126/science.aap9437
117.
Taylor, Z. W., Raushel, F. M., Cytidine Diphosphoramidate Kinase: An Enzyme Required for the Biosynthesis of the O-Methyl Phosphoramidate Modification in the Capsular Polysaccharides of Campylobacter jejuni. Biochemistry, 2018. 57(15): p. 2238-2244. http://doi.org/10.1021/acs.biochem.8b00279
118.
Rose, H. R., Ghosh, M. K., Maggiolo, A. O., Pollock, C. J., Blaesi, E. J., Hajj, V., Wei, Y., Rajakovich, L. J., Chang, W. C., Han, Y., Hajj, M., Krebs, C., Silakov, A., Pandelia, M. E., Bollinger, J. M., J., Boal, A. K., Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry, 2018. 57(18): p. 2679-2693. http://doi.org/10.1021/acs.biochem.8b00247
119.
Mukherjee, K., Narindoshvili, T., Raushel, F. M., Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12. Biochemistry, 2018. 57(19): p. 2857-2867. http://doi.org/10.1021/acs.biochem.8b00392
120.
Mallette, E., Kimber, M. S., Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis. Biochemistry, 2018. 57(26): p. 3780-3789. http://doi.org/10.1021/acs.biochem.8b00464
121.
Koppel, N., Bisanz, J. E., Pandelia, M. E., Turnbaugh, P. J., Balskus, E. P., Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. Elife, 2018. 7: p. e33953. http://doi.org/10.7554/eLife.33953
122.
Stojkovic, V., Chu, T., Therizols, G., Weinberg, D. E., Fujimori, D. G., miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes. J Am Chem Soc, 2018. 140(23): p. 7135-7143. http://doi.org/10.1021/jacs.8b02618
123.
Mehrer, C. R., Incha, M. R., Politz, M. C., Pfleger, B. F., Anaerobic production of medium-chain fatty alcohols via a beta-reduction pathway. Metab Eng, 2018. 48: p. 63-71. http://doi.org/10.1016/j.ymben.2018.05.011
124.
Dong, L. B., Rudolf, J. D., Deng, M. R., Yan, X., Shen, B., Discovery of the Tiancilactone Antibiotics by Genome Mining of Atypical Bacterial Type II Diterpene Synthases. Chembiochem, 2018. 19(16): p. 1727-1733. http://doi.org/10.1002/cbic.201800285
125.
Carter, M. S., Zhang, X., Huang, H., Bouvier, J. T., Francisco, B. S., Vetting, M. W., Al-Obaidi, N., Bonanno, J. B., Ghosh, A., Zallot, R. G., Andersen, H. M., Almo, S. C., Gerlt, J. A., Functional assignment of multiple catabolic pathways for D-apiose. Nat Chem Biol, 2018. 14(7): p. 696-705. http://doi.org/10.1038/s41589-018-0067-7
126.
Bridwell-Rabb, J., Grell, T. A. J., Drennan, C. L., A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited. Annu Rev Biochem, 2018. 87: p. 555-584. http://doi.org/10.1146/annurev-biochem-062917-012500
127.
Yuenyao, A., Petchyam, N., Kamonsutthipaijit, N., Chaiyen, P., Pakotiprapha, D., Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands. Arch Biochem Biophys, 2018. 653: p. 24-38. http://doi.org/10.1016/j.abb.2018.06.010
128.
Chang, C. Y., Yan, X., Crnovcic, I., Annaval, T., Chang, C., Nocek, B., Rudolf, J. D., Yang, D., Hindra,, Babnigg, G., Joachimiak, A., Phillips, G. N., J., Shen, B., Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chem Biol, 2018. 25(9): p. 1075-1085 e4. http://doi.org/10.1016/j.chembiol.2018.05.012
129.
Liao, L., Schaefer, A. L., Coutinho, B. G., Brown, P. J. B., Greenberg, E. P., An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. Proc Natl Acad Sci U S A, 2018. 115(29): p. 7587-7592. http://doi.org/10.1073/pnas.1808351115
130.
Ryu, H., Grove, T. L., Almo, S. C., Kim, J., Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Nucleic Acids Res, 2018. 46(17): p. 9160-9169. http://doi.org/10.1093/nar/gky592
131.
Kim, K. H., Jia, X., Jia, B., Jeon, C. O., Identification and Characterization of l-Malate Dehydrogenases and the l-Lactate-Biosynthetic Pathway in Leuconostoc mesenteroides ATCC 8293. J Agric Food Chem, 2018. 66(30): p. 8086-8093. http://doi.org/10.1021/acs.jafc.8b02649
132.
Jia, B., Pu, Z. J., Tang, K., Jia, X., Kim, K. H., Liu, X., Jeon, C. O., Catalytic, Computational, and Evolutionary Analysis of the d-Lactate Dehydrogenases Responsible for d-Lactic Acid Production in Lactic Acid Bacteria. J Agric Food Chem, 2018. 66(31): p. 8371-8381. http://doi.org/10.1021/acs.jafc.8b02454
133.
Viana, A. T., Caetano, T., Covas, C., Santos, T., Mendo, S., Environmental superbugs: The case study of Pedobacter spp. Environ Pollut, 2018. 241: p. 1048-1055. http://doi.org/10.1016/j.envpol.2018.06.047
134.
Chakravarti, A., Selvadurai, K., Shahoei, R., Lee, H., Fatma, S., Tajkhorshid, E., Huang, R. H., Reconstitution and substrate specificity for isopentenyl pyrophosphate of the antiviral radical SAM enzyme viperin. J Biol Chem, 2018. 293(36): p. 14122-14133. http://doi.org/10.1074/jbc.RA118.003998
135.
Copp, J. N., Akiva, E., Babbitt, P. C., Tokuriki, N., Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry, 2018. 57(31): p. 4651-4662. http://doi.org/10.1021/acs.biochem.8b00473
136.
Wang, S. C., Cobalamin-dependent radical S-adenosyl-l-methionine enzymes in natural product biosynthesis. Nat Prod Rep, 2018. 35(8): p. 707-720. http://doi.org/10.1039/c7np00059f
137.
Annaval, T., Han, L., Rudolf, J. D., Xie, G., Yang, D., Chang, C. Y., Ma, M., Crnovcic, I., Miller, M. D., Soman, J., Xu, W., Phillips, G. N., J., Shen, B., Biochemical and Structural Characterization of TtnD, a Prenylated FMN-Dependent Decarboxylase from the Tautomycetin Biosynthetic Pathway. ACS Chem Biol, 2018. 13(9): p. 2728-2738. http://doi.org/10.1021/acschembio.8b00673
138.
An, L., Cogan, D. P., Navo, C. D., Jimenez-Oses, G., Nair, S. K., van der Donk, W. A., Substrate-assisted enzymatic formation of lysinoalanine in duramycin. Nat Chem Biol, 2018. 14(10): p. 928-933. http://doi.org/10.1038/s41589-018-0122-4
139.
Roy, R., Samanta, S., Patra, S., Mahato, N. K., Saha, R. P., In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics, 2018. 10(10): p. 1476-1500. http://doi.org/10.1039/c8mt00082d
140.
Ongpipattanakul, C., Nair, S. K., Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis. ACS Chem Biol, 2018. 13(10): p. 2989-2999. http://doi.org/10.1021/acschembio.8b00668
141.
Hogancamp, T. N., Mabanglo, M. F., Raushel, F. M., Structure and Reaction Mechanism of the LigJ Hydratase: An Enzyme Critical for the Bacterial Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway. Biochemistry, 2018. 57(40): p. 5841-5850. http://doi.org/10.1021/acs.biochem.8b00713
142.
Wood, B. M., Santa M. J. P., J., Matano, L. M., Vickery, C. R., Walker, S., A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem, 2018. 293(46): p. 17985-17996. http://doi.org/10.1074/jbc.RA118.004561
143.
Ward, A. C., Allenby, N. E., Genome mining for the search and discovery of bioactive compounds: the Streptomyces paradigm. FEMS Microbiol Lett, 2018. 365(24): p. fny240. http://doi.org/10.1093/femsle/fny240
144.
Nemmara, V. V., Xiang, D. F., Fedorov, A. A., Fedorov, E. V., Bonanno, J. B., Almo, S. C., Raushel, F. M., Substrate Profile of the Phosphotriesterase Homology Protein from Escherichia coli. Biochemistry, 2018. 57(43): p. 6219-6227. http://doi.org/10.1021/acs.biochem.8b00935
145.
Luo, S., Huang, H., Discovering a new catabolic pathway of D-ribonate in Mycobacterium smegmatis. Biochem Biophys Res Commun, 2018. 505(4): p. 1107-1111. http://doi.org/10.1016/j.bbrc.2018.10.033
146.
Blair, P. M., Land, M. L., Piatek, M. J., Jacobson, D. A., Lu, T. S., Doktycz, M. J., Pelletier, D. A., Exploration of the Biosynthetic Potential of the Populus Microbiome. mSystems, 2018. 3(5): p. e00045-18. http://doi.org/10.1128/mSystems.00045-18
147.
Amatuni, A., Renata, H., Identification of a lysine 4-hydroxylase from the glidobactin biosynthesis and evaluation of its biocatalytic potential. Org Biomol Chem, 2019. 17(7): p. 1736-1739. http://doi.org/10.1039/c8ob02054j
148.
Fisher, O. S., Kenney, G. E., Ross, M. O., Ro, S. Y., Lemma, B. E., Batelu, S., Thomas, P. M., Sosnowski, V. C., DeHart, C. J., Kelleher, N. L., Stemmler, T. L., Hoffman, B. M., Rosenzweig, A. C., Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun, 2018. 9(1): p. 4276. http://doi.org/10.1038/s41467-018-06681-5
149.
Mallette, E., Kimber, M. S., Structural and kinetic characterization of (S)-1-amino-2-propanol kinase from the aminoacetone utilization microcompartment of Mycobacterium smegmatis. J Biol Chem, 2018. 293(51): p. 19909-19918. http://doi.org/10.1074/jbc.RA118.005485
150.
Vogt, M. S., Volpel, S. L., Albers, S. V., Essen, L. O., Banerjee, A., Crystal structure of an Lrs14-like archaeal biofilm regulator from Sulfolobus acidocaldarius. Acta Crystallogr D Struct Biol, 2018. 74(Pt 11): p. 1105-1114. http://doi.org/10.1107/S2059798318014146
151.
Bushin, L. B., Clark, K. A., Pelczer, I., Seyedsayamdost, M. R., Charting an Unexplored Streptococcal Biosynthetic Landscape Reveals a Unique Peptide Cyclization Motif. J Am Chem Soc, 2018. 140(50): p. 17674-17684. http://doi.org/10.1021/jacs.8b10266
152.
Mandalapu, D., Ji, X., Zhang, Q., Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes. Biochemistry, 2019. 58(1): p. 36-39. http://doi.org/10.1021/acs.biochem.8b00844
153.
Coscolin, C., Katzke, N., Garcia-Moyano, A., Navarro-Fernandez, J., Almendral, D., Martinez-Martinez, M., Bollinger, A., Bargiela, R., Gertler, C., Chernikova, T. N., Rojo, D., Barbas, C., Tran, H., Golyshina, O. V., Koch, R., Yakimov, M. M., Bjerga, G. E. K., Golyshin, P. N., Jaeger, K. E., Ferrer, M., Bioprospecting Reveals Class III omega-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Appl Environ Microbiol, 2019. 85(2). http://doi.org/10.1128/AEM.02404-18
154.
Dalponte, L., Parajuli, A., Younger, E., Mattila, A., Jokela, J., Wahlsten, M., Leikoski, N., Sivonen, K., Jarmusch, S. A., Houssen, W. E., Fewer, D. P., N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry, 2018. 57(50): p. 6860-6867. http://doi.org/10.1021/acs.biochem.8b00879
155.
Rajakovich, L. J., Balskus, E. P., Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat Prod Rep, 2019. 36(4): p. 593-625. http://doi.org/10.1039/c8np00074c
156.
Chen, D., Zhao, Q., Liu, W., Discovery of caerulomycin/collismycin-type 2,2'-bipyridine natural products in the genomic era. J Ind Microbiol Biotechnol, 2019. 46(3-4): p. 459-468. http://doi.org/10.1007/s10295-018-2092-7
157.
Wu, Y., Wu, R., Mandalapu, D., Ji, X., Chen, T., Ding, W., Zhang, Q., Radical SAM-dependent adenosylation catalyzed by l-tyrosine lyases. Org Biomol Chem, 2019. 17(7): p. 1809-1812. http://doi.org/10.1039/c8ob02906g
158.
Caruso, A., Bushin, L. B., Clark, K. A., Martinie, R. J., Seyedsayamdost, M. R., Radical Approach to Enzymatic beta-Thioether Bond Formation. J Am Chem Soc, 2019. 141(2): p. 990-997. http://doi.org/10.1021/jacs.8b11060
159.
Yin, L., Harwood, C. S., Functional divergence of annotated l-isoaspartate O-methyltransferases in an alpha-proteobacterium. J Biol Chem, 2019. 294(8): p. 2854-2861. http://doi.org/10.1074/jbc.RA118.006546
160.
Erb, T. J., Back to the future: Why we need enzymology to build a synthetic metabolism of the future. Beilstein journal of organic chemistry, 2019. 15(1): p. 551-557. http://doi.org/10.3762/bjoc.15.49
161.
Harrison, A. O., Moore, R. M., Polson, S. W., Wommack, K. E., Reannotation of the ribonucleotide reductase in a cyanophage reveals life history strategies within the virioplankton. Frontiers in microbiology, 2019. 10: p. 134. http://doi.org/10.3389/fmicb.2019.00134
162.
Guo, J., Higgins, M. A., Daniel-Ivad, P., Ryan, K. S., An Asymmetric Reductase that Intercepts Acyclic Imino Acids Produced In Situ by a Partner Oxidase. Journal of the American Chemical Society, 2019. 141(31): p. 12258-12267. http://doi.org/10.1021/jacs.9b03307
163.
Hangasky, J. A., Detomasi, T. C., Marletta, M. A., Glycosidic bond hydroxylation by polysaccharide monooxygenases. Trends in Chemistry, 2019. http://doi.org/10.1016/j.trechm.2019.01.007
164.
Bobeica, S. C., Dong, S., Huo, L., Mazo, N., McLaughlin, M. I., Jimenez-Oses, G., Nair, S. K., van der Donk, W. A., Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife, 2019. 8: p. e42305. http://doi.org/10.7554/eLife.42305
165.
Lin, G., Warden-Rothman, R., Voigt, C. A., Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019. http://doi.org/10.1016/j.coisb.2019.04.004
166.
Jia, B., Yuan, D., Lan, W. J., Xuan, Y. H., Jeon, C. O., New insight into the classification and evolution of glucose transporters in the Metazoa. The FASEB Journal, 2019. 33(6): p. 7519-7528. http://doi.org/10.1096/fj.201802617R
167.
Rizzolo, K., Cohen, S. E., Weitz, A. C., Muñoz, M. M. L., Hendrich, M. P., Drennan, C. L., Elliott, S. J., A widely distributed diheme enzyme from Burkholderia that displays an atypically stable bis-Fe (IV) state. Nature communications, 2019. 10(1): p. 1101. http://doi.org/10.1038/s41467-019-09020-4
168.
Gama, S. R., Vogt, M., Kalina, T., Hupp, K., Hammerschmidt, F., Pallitsch, K., Zechel, D. L., An oxidative pathway for microbial utilization of methylphosphonic acid as a phosphate source. ACS chemical biology, 2019. 14(4): p. 735-741. http://doi.org/10.1021/acschembio.9b00024
169.
Rolf, J., Rosenthal, K., Lütz, S., Application of Cell-Free Protein Synthesis for Faster Biocatalyst Development. Catalysts, 2019. 9(2): p. 190. http://doi.org/10.3390/catal9020190
170.
Pellock, S. J., Walton, W. G., Redinbo, M. R., Selecting a Single Stereocenter: The Molecular Nuances That Differentiate β-Hexuronidases in the Human Gut Microbiome. Biochemistry, 2019. 58(9): p. 1311-1317. http://doi.org/10.1021/acs.biochem.8b01285
171.
Zhang, Y., Blaby-Haas, C. E., Steimle, S., Verissimo, A. F., Garcia-Angulo, V. A., Koch, H., Daldal, F., Khalfaoui-Hassani, B., Cu Transport by the Extended Family of C co A-l ike T ransporters (CalT) in Proteobacteria. Scientific reports, 2019. 9(1): p. 1208. http://doi.org/10.1038/s41598-018-37988-4
172.
Dunbar, K. L., Dell, M., Molloy, E. M., Kloss, F., Hertweck, C., Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals a Novel Nonribosomal Peptide Backbone‐Tailoring Strategy. Angewandte Chemie, 2019. 58(37): p. 13014-13018. http://doi.org/10.1002/anie.201905992
173.
Gumkowski, J. D., Martinie, R. J., Corrigan, P., Pan, J., Bauerle, M. R., Almarei, M., Booker, S. J., Silakov, A., Krebs, C., Boal, A. K., Analysis of RNA methylation by phylogenetically diverse Cfr radical SAM enzymes reveals an iron-binding accessory domain in a clostridial enzyme. Biochemistry, 2019. 58(29): p. 3169-3184. http://doi.org/10.1021/acs.biochem.9b00197
174.
Khavrutskii, I. V., Compton, J. R., Jurkouich, K., Legler, P. M., Paired Carboxylic Acids in Enzymes and their Role in Selective Substrate Binding, Catalysis, and Unusually Shifted pKa Values. Biochemistry, 2019. 58(52): p. 5351-5365. http://doi.org/10.1021/acs.biochem.9b00429
175.
Radle, M. I., Miller, D. V., Laremore, T. N., Booker, S. J., Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. Journal of Biological Chemistry, 2019. 294(11712-11725): p. jbc. RA119. 007609. http://doi.org/10.1074/jbc.RA119.007609
176.
Hudson, G. A., Burkhart, B. J., DiCaprio, A. J., Schwalen, C., Kille, B., Pogorelov, T. V., Mitchell, D. A., Bioinformatic mapping of radical SAM-dependent RiPPs identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. Journal of the American Chemical Society, 2019. 141(20): p. 8228-8238. http://doi.org/10.1021/jacs.9b01519.
177.
Bashiri, G., Antoney, J., Jirgis, E. N., Shah, M. V., Ney, B., Copp, J., Stuteley, S. M., Sreebhavan, S., Palmer, B., Middleditch, M., A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nature communications, 2019. 10(1): p. 1558. http://doi.org/10.1038/s41467-019-09534-x
178.
Copp, J. N., Anderson, D. W., Akiva, E., Babbitt, P. C., Tokuriki, N., Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods in enzymology, 2019. 620: p. 315-347. http://doi.org/10.1016/bs.mie.2019.03.015
179.
Shi, J., Liu, C. L., Zhang, B., Guo, W. J., Zhu, J., Chang, C., Zhao, E. J., Jiao, R. H., Tan, R. X., Ge, H. M., Genome mining and biosynthesis of kitacinnamycins as a STING activator. Chemical science, 2019. 10(18): p. 4839-4846. http://doi.org/10.1039/c9sc00815b
180.
Ting, C. P., Funk, M. A., Halaby, S. L., Zhang, Z., Gonen, T., van der Donk, W. A., Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science, 2019. 365(6450): p. 280-284. http://doi.org/10.1126/science.aau6232
181.
DiCaprio, A. J., Firouzbakht, A., Hudson, G. A., Mitchell, D. A., Enzymatic Reconstitution and Biosynthetic Investigation of the Lasso Peptide Fiusilassin. J Am Chem Soc, 2019. 141(1): p. 290-297. http://doi.org/10.1021/jacs.8b09928
182.
Travis, S., Shay, M. R., Manabe, S., Gilbert, N. C., Frantom, P. A., Thompson, M. K., Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. MedChemComm, 2019. 10(11): p. 1948-1957. http://doi.org/10.1039/c9md00372j
183.
Neugebauer, M.E., Sumida, K.H., Pelton, J.G., McMurry, J.L., Marchand, J.A., Chang, M.C.Y., A family of radical halogenases for the engineering of amino-acid-based products. Nature chemical biology, 2019. 15(10): p. 1009-1016. http://doi.org/10.1038/s41589-019-0355-x
184.
Yi, X., Zhao, Q., Tian, Z., Jia, X., Cao, W., Liu, W., He, Q.-L., Insights into the Functionalization of the Methylsalicyclic Moiety during the Biosynthesis of Chlorothricin by Comparative Kinetic Assays of the Activities of Two KAS III-like Acyltransferases. Chinese J Chemistry, 2019. http://doi.org/10.1002/cjoc.201900134
185.
Han, L., Yuan, J., Ao, X., Lin, S., Han, X., Ye, H., Biochemical Characterization and Phylogenetic Analysis of the Virulence Factor Lysine Decarboxylase From Vibrio vulnificus. Front Microbiol, 2018. 9: p. 3082. http://doi.org/10.3389/fmicb.2018.03082
186.
Gonzalez, J. M., Hernandez, L., Manzano, I., Pedros-Alio, C., Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate. ISME J, 2019. 13(5): p. 1183-1197. http://doi.org/10.1038/s41396-019-0347-6
187.
Pellock, S. J., Walton, W. G., Ervin, S. M., Torres-Rivera, D., Creekmore, B. C., Bergan, G., Dunn, Z. D., Li, B., Tripathy, A., Redinbo, M. R., Discovery and Characterization of FMN-Binding beta-Glucuronidases in the Human Gut Microbiome. J Mol Biol, 2019. 431(5): p. 970-980. http://doi.org/10.1016/j.jmb.2019.01.013
188.
Chen, W., Frantom, P. A., Distinct mechanisms of substrate selectivity in the DRE-TIM metallolyase superfamily: A role for the LeuA dimer regulatory domain. Arch Biochem Biophys, 2019. 664: p. 1-8. http://doi.org/10.1016/j.abb.2019.01.021
189.
Maresca, J. A., Keffer, J. L., Hempel, P. P., Polson, S. W., Shevchenko, O., Bhavsar, J., Powell, D., Miller, K. J., Singh, A., Hahn, M. W., Light Modulates the Physiology of Nonphototrophic Actinobacteria. J Bacteriol, 2019. 201(10): p. e00740-18. http://doi.org/10.1128/JB.00740-18
190.
Biernat, K. A., Pellock, S. J., Bhatt, A. P., Bivins, M. M., Walton, W. G., Tran, B. N. T., Wei, L., Snider, M. C., Cesmat, A. P., Tripathy, A., Erie, D. A., Redinbo, M. R., Structure, function, and inhibition of drug reactivating human gut microbial beta-glucuronidases. Sci Rep, 2019. 9(1): p. 825. http://doi.org/10.1038/s41598-018-36069-w
191.
Zhi, Y., Narindoshvili, T., Bogomolnaya, L., Talamantes, M., El S. A., Andrews-Polymenis, H., Raushel, F. M., Deciphering the Enzymatic Function of the Bovine Enteric Infection-Related Protein YfeJ from Salmonella enterica Serotype Typhimurium. Biochemistry, 2019. 58(9): p. 1236-1245. http://doi.org/10.1021/acs.biochem.8b01283
192.
Zhou, Y., Wei, Y., Lin, L., Xu, T., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Biochemical and structural investigation of sulfoacetaldehyde reductase from Klebsiella oxytoca. Biochem J, 2019. 476(4): p. 733-746. http://doi.org/10.1042/BCJ20190005
193.
Peck, S. C., Denger, K., Burrichter, A., Irwin, S. M., Balskus, E. P., Schleheck, D., A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci U S A, 2019. 116(8): p. 3171-3176. http://doi.org/10.1073/pnas.1815661116
194.
Mukherjee, K., Huddleston, J. P., Narindoshvili, T., Nemmara, V. V., Raushel, F. M., Functional Characterization of the ycjQRS Gene Cluster from Escherichia coli: A Novel Pathway for the Transformation of d-Gulosides to d-Glucosides. Biochemistry, 2019. 58(10): p. 1388-1399. http://doi.org/10.1021/acs.biochem.8b01278
195.
Zhang, D., Zhang, F., Liu, W., A KAS-III Heterodimer in Lipstatin Biosynthesis Nondecarboxylatively Condenses C8 and C14 Fatty Acyl-CoA Substrates by a Variable Mechanism during the Establishment of a C22 Aliphatic Skeleton. J Am Chem Soc, 2019. 141(9): p. 3993-4001. http://doi.org/10.1021/jacs.8b12843
196.
Mo, T., Yuan, H., Wang, F., Ma, S., Wang, J., Li, T., Liu, G., Yu, S., Tan, X., Ding, W., Zhang, Q., Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis. FEBS Lett, 2019. 593(6): p. 573-580. http://doi.org/10.1002/1873-3468.13341
197.
Rajakovich, L. J., Pandelia, M. E., Mitchell, A. J., Chang, W. C., Zhang, B., Boal, A. K., Krebs, C., Bollinger, J. M., J., A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry, 2019. 58(12): p. 1627-1647. http://doi.org/10.1021/acs.biochem.9b00044
198.
Blaby-Haas, C. E., Merchant, S. S., Comparative and Functional Algal Genomics. Annu Rev Plant Biol, 2019. 70: p. 605-638. http://doi.org/10.1146/annurev-arplant-050718-095841
199.
Rose, H. R., Maggiolo, A. O., McBride, M. J., Palowitch, G. M., Pandelia, M. E., Davis, K. M., Yennawar, N. H., Boal, A. K., Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Biochemistry, 2019. 58(14): p. 1845-1860. http://doi.org/10.1021/acs.biochem.8b01252
200.
Mahanta, N., Hicks, K. A., Naseem, S., Zhang, Y., Fedoseyenko, D., Ealick, S. E., Begley, T. P., Menaquinone Biosynthesis: Biochemical and Structural Studies of Chorismate Dehydratase. Biochemistry, 2019. 58(14): p. 1837-1840. http://doi.org/10.1021/acs.biochem.9b00105
201.
Ji, X., Mo, T., Liu, W. Q., Ding, W., Deng, Z., Zhang, Q., Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl, 2019. 58(19): p. 6235-6238. http://doi.org/10.1002/anie.201814708
202.
Malik, A., Kim, S. B., A comprehensive in silico analysis of sortase superfamily. J Microbiol, 2019. 57(6): p. 431-443. http://doi.org/10.1007/s12275-019-8545-5
203.
Liu, J., Lin, Z., Li, Y., Zheng, Q., Chen, D., Liu, W., Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org Biomol Chem, 2019. 17(15): p. 3727-3731. http://doi.org/10.1039/c9ob00402e
204.
Xing, M., Wei, Y., Zhou, Y., Zhang, J., Lin, L., Hu, Y., Hua, G., N. N. U. A., Liu, D., Wang, F., Guo, C., Tong, Y., Li, M., Liu, Y., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun, 2019. 10(1): p. 1609. http://doi.org/10.1038/s41467-019-09618-8
205.
Tsui, H. S., Pham, N. V. B., Amer, B. R., Bradley, M. C., Gosschalk, J. E., Gallagher-Jones, M., Ibarra, H., Clubb, R. T., Blaby-Haas, C. E., Clarke, C. F., Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res, 2019. 60(7): p. 1293-1310. http://doi.org/10.1194/jlr.M093534
206.
Clark, J., Terwilliger, A., Nguyen, C., Green, S., Nobles, C., Maresso, A., Heme catabolism in the causative agent of anthrax. Mol Microbiol, 2019. 112(2): p. 515-531. http://doi.org/10.1111/mmi.14270
207.
Hai, Y., Huang, A. M., Tang, Y., Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc Natl Acad Sci U S A, 2019. 116(21): p. 10348-10353. http://doi.org/10.1073/pnas.1903282116
208.
Reis, R. A. G., Salvi, F., Williams, I., Gadda, G., Kinetic Investigation of a Presumed Nitronate Monooxygenase from Pseudomonas aeruginosa PAO1 Establishes a New Class of NAD(P)H:Quinone Reductases. Biochemistry, 2019. 58(22): p. 2594-2607. http://doi.org/10.1021/acs.biochem.9b00207
209.
Hepowit, N. L., Maupin-Furlow, J. A., Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea. J Bacteriol, 2019. 201(15): p. JB. 00254-19. http://doi.org/10.1128/JB.00254-19
210.
Chekan, J. R., Lee, G. Y., El G. A., Purdy, T. N., Houk, K. N., Moore, B. S., Bacterial Tetrabromopyrrole Debrominase Shares a Reductive Dehalogenation Strategy with Human Thyroid Deiodinase. Biochemistry, 2019. 58(52): p. 5329-5338. http://doi.org/10.1021/acs.biochem.9b00318
211.
Tong, Y., Wei, Y., Hu, Y., Ang, E. L., Zhao, H., Zhang, Y., A Pathway for Isethionate Dissimilation in Bacillus krulwichiae. Appl Environ Microbiol, 2019. 85(15): p. AEM. 00793-19. http://doi.org/10.1128/AEM.00793-19
212.
Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A., Nair, S. K., Mechanistic Basis for Ribosomal Peptide Backbone Modifications. ACS Cent Sci, 2019. 5(5): p. 842-851. http://doi.org/10.1021/acscentsci.9b00124
213.
Lee, S., Kang, J., Kim, J., Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci Rep, 2019. 9(1): p. 8059. http://doi.org/10.1038/s41598-019-44592-7
214.
Sieow, B. F., Nurminen, T. J., Ling, H., Chang, M. W., Meta-Omics- and Metabolic Modeling-Assisted Deciphering of Human Microbiota Metabolism. Biotechnol J, 2019. 14(9): p. e1800445. http://doi.org/10.1002/biot.201800445
215.
Sutzl, L., Foley, G., Gillam, E. M. J., Boden, M., Haltrich, D., The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels, 2019. 12(1): p. 118. http://doi.org/10.1186/s13068-019-1457-0
216.
Morishita, Y., Zhang, H., Taniguchi, T., Mori, K., Asai, T., The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi. Org Lett, 2019. 21(12): p. 4788-4792. http://doi.org/10.1021/acs.orglett.9b01674
217.
Wang, Y., Shin, I., Fu, Y., Colabroy, K. L., Liu, A., Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Biochemistry, 2019. 58(52): p. 5339-5350. http://doi.org/10.1021/acs.biochem.9b00396
218.
Jaroensuk, J., Intasian, P., Kiattisewee, C., Munkajohnpon, P., Chunthaboon, P., Buttranon, S., Trisrivirat, D., Wongnate, T., Maenpuen, S., Tinikul, R., Chaiyen, P., Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem, 2019. 294(30): p. 11536-11548. http://doi.org/10.1074/jbc.RA119.008246
219.
Kraberger, S., Schmidlin, K., Fontenele, R. S., Walters, M., Varsani, A., Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses, 2019. 11(6): p. 532. http://doi.org/10.3390/v11060532
220.
Sikandar, A., Franz, L., Melse, O., Antes, I., Koehnke, J., Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis. J Am Chem Soc, 2019. 141(25): p. 9748-9752. http://doi.org/10.1021/jacs.8b12231
221.
Chekan, J. R., Ongpipattanakul, C., Wright, T. R., Zhang, B., Bollinger, J. M., J., Rajakovich, L. J., Krebs, C., Cicchillo, R. M., Nair, S. K., Molecular basis for enantioselective herbicide degradation imparted by aryloxyalkanoate dioxygenases in transgenic plants. Proc Natl Acad Sci U S A, 2019. 116(27): p. 13299-13304. http://doi.org/10.1073/pnas.1900711116
222.
Pongpamorn, P., Watthaisong, P., Pimviriyakul, P., Jaruwat, A., Lawan, N., Chitnumsub, P., Chaiyen, P., Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase. Chembiochem, 2019. 20(24): p. 3020-3031. http://doi.org/10.1002/cbic.201900413
223.
Li, B. C., Zhang, T., Li, Y. Q., Ding, G. B., Target Discovery of Novel alpha-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol, 2019. 189(4): p. 1245-1261. http://doi.org/10.1007/s12010-019-03063-5
224.
Vu, V. V., Hangasky, J. A., Detomasi, T. C., Henry, S. J. W., Ngo, S. T., Span, E. A., Marletta, M. A., Substrate selectivity in starch polysaccharide monooxygenases. J Biol Chem, 2019. 294(32): p. 12157-12166. http://doi.org/10.1074/jbc.RA119.009509
225.
Morgan, G. L., Kretsch, A. M., Santa M. K. C., Weeks, S. J., Li, B., Specificity of Nonribosomal Peptide Synthetases in the Biosynthesis of the Pseudomonas virulence factor. Biochemistry, 2019. 58(52): p. 5249-5254. http://doi.org/10.1021/acs.biochem.9b00360
226.
Clark, K. A., Bushin, L. B., Seyedsayamdost, M. R., Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis. J Am Chem Soc, 2019. 141(27): p. 10610-10615. http://doi.org/10.1021/jacs.9b05151
227.
Hermenau, R., Mehl, J. L., Ishida, K., Dose, B., Pidot, S. J., Stinear, T. P., Hertweck, C., Genomics-Driven Discovery of NO-Donating Diazeniumdiolate Siderophores in Diverse Plant-Associated Bacteria. Angew Chem Int Ed Engl, 2019. 58(37): p. 13024-13029. http://doi.org/10.1002/anie.201906326
228.
Giessen, T. W., Orlando, B. J., Verdegaal, A. A., Chambers, M. G., Gardener, J., Bell, D. C., Birrane, G., Liao, M., Silver, P. A., Large protein organelles form a new iron sequestration system with high storage capacity. Elife, 2019. 8. http://doi.org/10.7554/eLife.46070
229.
Niehs, S. P., Dose, B., Scherlach, K., Pidot, S. J., Stinear, T. P., Hertweck, C., Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-Bacterial Symbiosis. ACS Chem Biol, 2019. 14(8): p. 1811-1818. http://doi.org/10.1021/acschembio.9b00406
230.
Dong, L. B., Liu, Y. C., Cepeda, A. J., Kalkreuter, E., Deng, M. R., Rudolf, J. D., Chang, C., Joachimiak, A., Phillips, G. N., J., Shen, B., Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc, 2019. 141(31): p. 12406-12412. http://doi.org/10.1021/jacs.9b06183
231.
Zhang, R., Xu, X., Cao, H., Yuan, C., Yuminaga, Y., Zhao, S., Shi, J., Zhang, B., Purification, characterization, and application of a high activity 3-ketosteroid-Delta(1)-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol, 2019. 103(16): p. 6605-6616. http://doi.org/10.1007/s00253-019-09988-5
232.
Helfrich, E. J. N., Ueoka, R., Dolev, A., Rust, M., Meoded, R. A., Bhushan, A., Califano, G., Costa, R., Gugger, M., Steinbeck, C., Moreno, P., Piel, J., Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol, 2019. 15(8): p. 813-821. http://doi.org/10.1038/s41589-019-0313-7
233.
Lefeuvre, P., Martin, D. P., Elena, S. F., Shepherd, D. N., Roumagnac, P., Varsani, A., Evolution and ecology of plant viruses. Nat Rev Microbiol, 2019. 17(10): p. 632-644. http://doi.org/10.1038/s41579-019-0232-3
234.
Huddleston, J. P., Raushel, F. M., Functional Characterization of YdjH, a Sugar Kinase of Unknown Specificity in Escherichia coli K12. Biochemistry, 2019. 58(31): p. 3354-3364. http://doi.org/10.1021/acs.biochem.9b00327
235.
Huddleston, J. P., Thoden, J. B., Dopkins, B. J., Narindoshvili, T., Fose, B. J., Holden, H. M., Raushel, F. M., Structural and Functional Characterization of YdjI, an Aldolase of Unknown Specificity in Escherichia coli K12. Biochemistry, 2019. 58(31): p. 3340-3353. http://doi.org/10.1021/acs.biochem.9b00326
236.
Fontenele, R. S., Lacorte, C., Lamas, N. S., Schmidlin, K., Varsani, A., Ribeiro, S. G., Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses, 2019. 11(8). http://doi.org/10.3390/v11080710
237.
Desmarais, J. J., Flamholz, A. I., Blikstad, C., Dugan, E. J., Laughlin, T. G., Oltrogge, L. M., Chen, A. W., Wetmore, K., Diamond, S., Wang, J. Y., Savage, D. F., DABs are inorganic carbon pumps found throughout prokaryotic phyla. Nat Microbiol, 2019. 4(12): p. 2204-2215. http://doi.org/10.1038/s41564-019-0520-8
238.
Neupane, D. P., Fullam, S. H., Chacon, K. N., Yukl, E. T., Crystal structures of AztD provide mechanistic insights into direct zinc transfer between proteins. Commun Biol, 2019. 2: p. 308. http://doi.org/10.1038/s42003-019-0542-z
239.
Canu, N., Moutiez, M., Belin, P., Gondry, M., Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep, 2020. 37(3): p. 312-321. http://doi.org/10.1039/c9np00036d
240.
Huddleston, J. P., Raushel, F. M., Biosynthesis of GDP-d-glycero-alpha-d-manno-heptose for the Capsular Polysaccharide of Campylobacter jejuni. Biochemistry, 2019. 58(37): p. 3893-3902. http://doi.org/10.1021/acs.biochem.9b00548
241.
Rajendran, A., Vaidya, K., Mendoza, J., Bridwell-Rabb, J., Kamat, S. S., Functional Annotation of ABHD14B, an Orphan Serine Hydrolase Enzyme. Biochemistry, 2020. 59(2): p. 183-196. http://doi.org/10.1021/acs.biochem.9b00703
242.
Yuan, Y., Zallot, R., Grove, T. L., Payan, D. J., Martin-Verstraete, I., Sepic, S., Balamkundu, S., Neelakandan, R., Gadi, V. K., Liu, C. F., Swairjo, M. A., Dedon, P. C., Almo, S. C., Gerlt, J. A., de Crecy-Lagard, V., Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A, 2019. 116(38): p. 19126-19135. http://doi.org/10.1073/pnas.1909604116
243.
Danczak, R. E., Johnston, M. D., Kenah, C., Slattery, M., Wilkins, M. J., Capability for arsenic mobilization in groundwater is distributed across broad phylogenetic lineages. PLoS One, 2019. 14(9): p. e0221694. http://doi.org/10.1371/journal.pone.0221694
244.
Umana, A., Sanders, B. E., Yoo, C. C., Casasanta, M. A., Udayasuryan, B., Verbridge, S. S., Slade, D. J., Utilizing Whole Fusobacterium Genomes To Identify, Correct, and Characterize Potential Virulence Protein Families. J Bacteriol, 2019. 201(23). http://doi.org/10.1128/JB.00273-19
245.
You, J., Lin, S., Jiang, T., Origins and Evolution of the alpha-L-Fucosidases: From Bacteria to Metazoans. Front Microbiol, 2019. 10: p. 1756. http://doi.org/10.3389/fmicb.2019.01756
246.
Kenney, G. E., Dassama, L. M. K., Manesis, A. C., Ross, M. O., Chen, S., Hoffman, B. M., Rosenzweig, A. C., MbnH is a diheme MauG-like protein associated with microbial copper homeostasis. J Biol Chem, 2019. 294(44): p. 16141-16151. http://doi.org/10.1074/jbc.RA119.010202
247.
Bruno, S., Coppola, D., di P. G., Giordano, D., Verde, C., Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs, 2019. 17(10). http://doi.org/10.3390/md17100544
248.
Ji, Z. Y., Nie, Q. Y., Yin, Y., Zhang, M., Pan, H. X., Hou, X. F., Tang, G. L., Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl, 2019. 58(50): p. 18046-18054. http://doi.org/10.1002/anie.201910882
249.
Gomez-Escribano, J. P., Castro, J. F., Razmilic, V., Jarmusch, S. A., Saalbach, G., Ebel, R., Jaspars, M., Andrews, B., Asenjo, J. A., Bibb, M. J., Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34(T) Yields a Novel Lasso Peptide, Leepeptin. Appl Environ Microbiol, 2019. 85(23). http://doi.org/10.1128/AEM.01752-19
250.
Marckmann, D., Trasnea, P. I., Schimpf, J., Winterstein, C., Andrei, A., Schmollinger, S., Blaby-Haas, C. E., Friedrich, T., Daldal, F., Koch, H. G., The cbb 3-type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proc Natl Acad Sci U S A, 2019. 116(42): p. 21166-21175. http://doi.org/10.1073/pnas.1913803116
251.
Policarpo, R. L., Decultot, L., May, E., Kuzmic, P., Carlson, S., Huang, D., Chu, V., Wright, B. A., Dhakshinamoorthy, S., Kannt, A., Rani, S., Dittakavi, S., Panarese, J. D., Gaudet, R., Shair, M. D., High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J Med Chem, 2019. 62(21): p. 9837-9873. http://doi.org/10.1021/acs.jmedchem.9b01238
252.
Hager, F. F., Sutzl, L., Stefanovic, C., Blaukopf, M., Schaffer, C., Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci, 2019. 20(19). http://doi.org/10.3390/ijms20194929
253.
Zwick, C. R., 3rd, Sosa, M. B., Renata, H., Characterization of a Citrulline 4-Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angew Chem Int Ed Engl, 2019. 58(52): p. 18854-18858. http://doi.org/10.1002/anie.201910659
254.
Bell, A., Brunt, J., Crost, E., Vaux, L., Nepravishta, R., Owen, C. D., Latousakis, D., Xiao, A., Li, W., Chen, X., Walsh, M. A., Claesen, J., Angulo, J., Thomas, G. H., Juge, N., Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol, 2019. 4(12): p. 2393-2404. http://doi.org/10.1038/s41564-019-0590-7
255.
Ervin, S. M., Li, H., Lim, L., Roberts, L. R., Liang, X., Mani, S., Redinbo, M. R., Gut microbial beta-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem, 2019. 294(49): p. 18586-18599. http://doi.org/10.1074/jbc.RA119.010950
256.
Ervin, S. M., Hanley, R. P., Lim, L., Walton, W. G., Pearce, K. H., Bhatt, A. P., James, L. I., Redinbo, M. R., Targeting Regorafenib-Induced Toxicity through Inhibition of Gut Microbial beta-Glucuronidases. ACS Chem Biol, 2019. 14(12): p. 2737-2744. http://doi.org/10.1021/acschembio.9b00663
257.
Pyser, J. B., Baker D. S. A., Benitez, A. R., Joyce, L. A., Wiscons, R. A., Smith, J. L., Narayan, A. R. H., Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc, 2019. 141(46): p. 18551-18559. http://doi.org/10.1021/jacs.9b09385
258.
Weiz, G., Mazzaferro, L. S., Kotik, M., Neher, B. D., Halada, P., Kren, V., Breccia, J. D., The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol, 2019. 103(23-24): p. 9493-9504. http://doi.org/10.1007/s00253-019-10180-y
259.
Chekan, J. R., Ongpipattanakul, C., Nair, S. K., Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Proc Natl Acad Sci U S A, 2019. 116(48): p. 24049-24055. http://doi.org/10.1073/pnas.1908364116
260.
Liu, Y., Su, L., Fang, Q., Tabudravu, J., Yang, X., Rickaby, K., Trembleau, L., Kyeremeh, K., Deng, Z., Deng, H., Yu, Y., Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. J Org Chem, 2019. 84(24): p. 16323-16328. http://doi.org/10.1021/acs.joc.9b02688
261.
Hutinet, G., Kot, W., Cui, L., Hillebrand, R., Balamkundu, S., Gnanakalai, S., Neelakandan, R., Carstens, A. B., Fa L. C., Tremblay, D., Jacobs-Sera, D., Sassanfar, M., Lee, Y. J., Weigele, P., Moineau, S., Hatfull, G. F., Dedon, P. C., Hansen, L. H., de Crecy-Lagard, V., 7-Deazaguanine modifications protect phage DNA from host restriction systems. Nat Commun, 2019. 10(1): p. 5442. http://doi.org/10.1038/s41467-019-13384-y
262.
Thierbach, S., Sartor, P., Yucel, O., Fetzner, S., Efficient modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges. J Biotechnol, 2020. 308: p. 74-81. http://doi.org/10.1016/j.jbiotec.2019.11.015
263.
Rodriguez B. A., Narayan, A. R. H., Frontiers in Biocatalysis: Profiling Function across Sequence Space. ACS Cent Sci, 2019. 5(11): p. 1747-1749. http://doi.org/10.1021/acscentsci.9b01112
264.
Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. C., Lewis, J. C., Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent Sci, 2019. 5(11): p. 1844-1856. http://doi.org/10.1021/acscentsci.9b00835
265.
Ganley, J. G., D'Ambrosio, H. K., Shieh, M., Derbyshire, E. R., Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. Chembiochem, 2019. http://doi.org/10.1002/cbic.201900675
266.
Ly, L. K., Rowles, J. L., 3rd, Paul, H. M., Alves, J. M. P., Yemm, C., Wolf, P. M., Devendran, S., Hudson, M. E., Morris, D. J., Erdman, J. W., J., Ridlon, J. M., Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol, 2020. 199: p. 105567. http://doi.org/10.1016/j.jsbmb.2019.105567
267.
Dhawi, F., Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sciences, 2020. 15(1): p. 68-78. http://doi.org/10.1515/biol-2020-0008
268.
Grzechowiak, M., Sliwiak, J., Jaskolski, M., Ruszkowski, M., Structural Studies of Glutamate Dehydrogenase (Isoform 1) from Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. Front Plant Sci, 2020. 11:754. http://doi.org/10.3389/fpls.2020.00754
269.
Vobruba, S., Kamenik, Z., Kadlcik, S., Janata, J., N-Deacetylation in Lincosamide Biosynthesis is Catalyzed byy a TldD/PmbA Family Protein. ACS Chem Biol, 2020. 15(8): p. 2048-2054. http://doi.org/10.1021/acschembio.0c00224
270.
Laffont, C., Arnoux, P., The ancient roots of nicotianamine: diversity, role, regulation, and evolution of nicotianamine-like metallophores. Metallomics, 2020. 12. http://doi.org/10.1039/D0MT00150C
271.
Esch, R., Merkl, R., Conserved genomic neighborhood is a strong but no perfect indicator for a direct interaction of microbial gene products. BMC Bioinformatics, 2020. 21(1): p. 5. http://doi.org/10.1186/s12859-019-3200-z
272.
Wang, Z., Tauzin, A. S., Laville, E., Tedesco, P., Letisse, F., Terrapon, N., Lepercq, P., Mercade, M., Potocki-Veronese, G., Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria. mSphere, 2020. 5(1). http://doi.org/10.1128/mSphere.00771-19
273.
Stack, T. M. M., Morrison, K. N., Dettmer, T. M., Wille, B., Kim, C., Joyce, R., Jermain, M., Naing, Y. T., Bhatti, K., Francisco, B. S., Carter, M. S., Gerlt, J. A., Characterization of an l-Ascorbate Catabolic Pathway with Unprecedented Enzymatic Transformations. J Am Chem Soc, 2020. 142(4): p. 1657-1661. http://doi.org/10.1021/jacs.9b09863
274.
Huang, J. Q., Fang, X., Tian, X., Chen, P., Lin, J. L., Guo, X. X., Li, J. X., Fan, Z., Song, W. M., Chen, F. Y., Ahati, R., Wang, L. J., Zhao, Q., Martin, C., Chen, X. Y., Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol, 2020. 16(3): p. 250-256. http://doi.org/10.1038/s41589-019-0446-8
275.
Steiningerova, L., Kamenik, Z., Gazak, R., Kadlcik, S., Bashiri, G., Man, P., Kuzma, M., Pavlikova, M., Janata, J., Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets. J Am Chem Soc, 2020. 142(7): p. 3440-3448. http://doi.org/10.1021/jacs.9b11234
276.
Athukoralage, J. S., McMahon, S. A., Zhang, C., Gruschow, S., Graham, S., Krupovic, M., Whitaker, R. J., Gloster, T. M., White, M. F., An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 2020. 577(7791): p. 572-575. http://doi.org/10.1038/s41586-019-1909-5
277.
Zhu, D., Wei, Y., Yin, J., Liu, D., Ang, E. L., Zhao, H., Zhang, Y., A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium. Appl Environ Microbiol, 2020. 86(7). http://doi.org/10.1128/AEM.02837-19
278.
Yun, B. R., Malik, A., Kim, S. B., Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene, 2020. 733: p. 144379. http://doi.org/10.1016/j.gene.2020.144379
279.
Fang, Q., Maglangit, F., Wu, L., Ebel, R., Kyeremeh, K., Andersen, J. H., Annang, F., Perez-Moreno, G., Reyes, F., Deng, H., Signalling and Bioactive Metabolites from Streptomyces sp. RK44. Molecules, 2020. 25(3). http://doi.org/10.3390/molecules25030460
280.
Martinez-Rodriguez, S., Soriano-Maldonado, P., Gavira, J. A., N-succinylamino acid racemases: Enzymatic properties and biotechnological applications. Biochim Biophys Acta Proteins Proteom, 2020. 1868(4): p. 140377. http://doi.org/10.1016/j.bbapap.2020.140377
281.
Orton, J. P., Morales, M., Fontenele, R. S., Schmidlin, K., Kraberger, S., Leavitt, D. J., Webster, T. H., Wilson, M. A., Kusumi, K., Dolby, G. A., Varsani, A., Virus Discovery in Desert Tortoise Fecal Samples: Novel Circular Single-Stranded DNA Viruses. Viruses, 2020. 12(2). http://doi.org/10.3390/v12020143
282.
Tisza, M. J., Pastrana, D. V., Welch, N. L., Stewart, B., Peretti, A., Starrett, G. J., Pang, Y. S., Krishnamurthy, S. R., Pesavento, P. A., McDermott, D. H., Murphy, P. M., Whited, J. L., Miller, B., Brenchley, J., Rosshart, S. P., Rehermann, B., Doorbar, J., Ta'ala, B. A., Pletnikova, O., Troncoso, J. C., Resnick, S. M., Bolduc, B., Sullivan, M. B., Varsani, A., Segall, A. M., Buck, C. B., Discovery of several thousand highly diverse circular DNA viruses. Elife, 2020. 9. http://doi.org/10.7554/eLife.51971
283.
Ueoka, R., Meoded, R. A., Gran-Scheuch, A., Bhushan, A., Fraaije, M. W., Piel, J., Genome Mining of Oxidation Modules in trans-Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.201916005
284.
Gorecki, K., McEvoy, M. M., Phylogenetic analysis reveals an ancient gene duplication as the origin of the MdtABC efflux pump. PLoS One, 2020. 15(2): p. e0228877. http://doi.org/10.1371/journal.pone.0228877
285.
Sekula, B., Ruszkowski, M., Dauter, Z., S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol, 2020. 151: p. 554-565. http://doi.org/10.1016/j.ijbiomac.2020.02.100
286.
Ding, W., Ji, X., Zhong, Y., Xu, K., Zhang, Q., Adenosylation reactions catalyzed by the radical S-adenosylmethionine superfamily enzymes. Curr Opin Chem Biol, 2020. 55: p. 86-95. http://doi.org/10.1016/j.cbpa.2020.01.007
287.
Li, J., Amatuni, A., Renata, H., Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr Opin Chem Biol, 2020. 55: p. 111-118. http://doi.org/10.1016/j.cbpa.2020.01.005
288.
Wullich, S. C., Arranz S. A., Fetzner, S., An alpha/beta-Hydrolase Fold Subfamily Comprising Pseudomonas Quinolone Signal-Cleaving Dioxygenases. Appl Environ Microbiol, 2020. 86(9). http://doi.org/10.1128/AEM.00279-20
289.
Campbell, I. J., Bennett, G. N., Silberg, J. J., Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Front Energy Res, 2019. 7. http://doi.org/10.3389/fenrg.2019.00079
290.
Caetano, T., van der Donk, W., Mendo, S., Bacteroidetes can be a rich source of novel lanthipeptides: The case study of Pedobacter lusitanus. Microbiol Res, 2020. 235: p. 126441. http://doi.org/10.1016/j.micres.2020.126441
291.
Mukhopadhyay, R., Chacon, K. N., Jarvis, J. M., Talipov, M. R., Yukl, E. T., Structural insights into the mechanism of oxidative activation of heme-free H-NOX from Vibrio cholerae. Biochem J, 2020. 477(6): p. 1123-1136. http://doi.org/10.1042/BCJ20200124
292.
Waldern, J., Schiraldi, N. J., Belfort, M., Novikova, O., Bacterial group II intron genomic neighborhoods reflect survival strategies: hiding and hijacking. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa055
293.
Bosch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., Piel, J., Landornamides, antiviral ornithine-containing ribosomal peptides discovered by proteusin mining. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.201916321
294.
Huddleston, J. P., Raushel, F. M., Functional Characterization of Cj1427, a Unique Ping-Pong Dehydrogenase Responsible for the Oxidation of GDP-d-glycero-alpha-d-manno-heptose in Campylobacter jejuni. Biochemistry, 2020. 59(13): p. 1328-1337. http://doi.org/10.1021/acs.biochem.0c00097
295.
Ghebreamlak, S. M., Mansoorabadi, S. O., Divergent Members of the Nitrogenase Superfamily: Tetrapyrrole Biosynthesis and Beyond. Chembiochem, 2020. http://doi.org/10.1002/cbic.201900782
296.
Jeoung, J. H., Martins, B. M., Dobbek, H., Double-Cubane [8Fe9S] Clusters: A Novel Nitrogenase-Related Cofactor in Biology. Chembiochem, 2020. http://doi.org/10.1002/cbic.202000016
297.
Tararina, M. A., Allen, K. N., Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol, 2020. http://doi.org/10.1016/j.jmb.2020.03.007
298.
Wang, B., Guo, F., Huang, C., Zhao, H., Unraveling the iterative type I polyketide synthases hidden in Streptomyces. Proc Natl Acad Sci U S A, 2020. 117(15): p. 8449-8454. http://doi.org/10.1073/pnas.1917664117
299.
Scott, T. A., Piel, J., The hidden enzymology of bacterial natural product biosynthesis. Nat Rev Chem, 2019. 3(7): p. 404-425. http://doi.org/10.1038/s41570-019-0107-1
300.
Zhang, C., Chen, X., Orban, A., Shukal, S., Birk, F., Too, H. P., Ruhl, M., Agrocybe aegerita Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi. ACS Chem Biol, 2020. http://doi.org/10.1021/acschembio.0c00155
301.
Fontenele, R. S., Salywon, A. M., Majure, L. C., Cobb, I. N., Bhaskara, A., Avalos-Calleros, J. A., Arguello-Astorga, G. R., Schmidlin, K., Khalifeh, A., Smith, K., Schreck, J., Lund, M. C., Kohler, M., Wojciechowski, M. F., Hodgson, W. C., Puente-Martinez, R., Van D. K., Kumari, S., Verniere, C., Filloux, D., Roumagnac, P., Lefeuvre, P., Ribeiro, S. G., Kraberger, S., Martin, D. P., Varsani, A., A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses, 2020. 12(4). http://doi.org/10.3390/v12040398
302.
Dunbar, K. L., Dell, M., Gude, F., Hertweck, C., Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy. Proc Natl Acad Sci U S A, 2020. 117(16): p. 8850-8858. http://doi.org/10.1073/pnas.1918759117
303.
Rocker, A., Lacey, J. A., Belousoff, M. J., Wilksch, J. J., Strugnell, R. A., Davies, M. R., Lithgow, T., Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae. mBio, 2020. 11(2). http://doi.org/10.1128/mBio.00603-20
304.
Uritskiy, G., Tisza, M. J., Gelsinger, D. R., Munn, A., Taylor, J., DiRuggiero, J., Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ Microbiol, 2021. 23(7): p. 3401-3417. http://doi.org/10.1111/1462-2920.15023
305.
Surger, M., Angelov, A., Liebl, W., Distribution and diversity of olefins and olefin-biosynthesis genes in Gram-positive bacteria. Biotechnol Biofuels, 2020. 13: p. 70. http://doi.org/10.1186/s13068-020-01706-y
306.
Suplatov, D., Sharapova, Y., Geraseva, E., Svedas, V., Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa276
307.
Jia, B., Park, D., Hahn, Y., Jeon, C. O., Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes, 2020. http://doi.org/10.1080/19490976.2020.1748261
308.
Wu, H., Rebello, O., Crost, E. H., Owen, C. D., Walpole, S., Bennati-Granier, C., Ndeh, D., Monaco, S., Hicks, T., Colvile, A., Urbanowicz, P. A., Walsh, M. A., Angulo, J., Spencer, D. I. R., Juge, N., Fucosidases from the human gut symbiont Ruminococcus gnavus. Cell Mol Life Sci, 2020. http://doi.org/10.1007/s00018-020-03514-x
309.
Manck, L. E., Espinoza, J. L., Dupont, C. L., Barbeau, K. A., Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii. mSystems, 2020. 5(2). http://doi.org/10.1128/mSystems.00070-20
310.
Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., Turnbaugh, P. J., A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host Microbe, 2020. http://doi.org/10.1016/j.chom.2020.04.006
311.
Jones, C. S., Sychantha, D., Howell, P. L., Clarke, A. J., Structural basis for the O-acetyltransferase function of the extracytoplasmic domain of OatA from Staphylococcus aureus. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.013108
312.
Williamson, A., Leiros, H. S., Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa307
313.
Hon, J., Borko, S., Stourac, J., Prokop, Z., Zendulka, J., Bednar, D., Martinek, T., Damborsky, J., EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa372
314.
ShylajaNaciyar, M., Karthick, L., Prakasam, P. A., Deviram, G., Uma, L., Prabaharan, D., Saha, S. K., Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms, 2020. 8(5). http://doi.org/10.3390/microorganisms8050712
315.
Wu, X., Zhou, H., Li, L., Wang, E., Zhou, X., Gu, Y., Wu, X., Shen, L., Zeng, W., Whole Genome Sequencing and Comparative Genomic Analyses of Lysinibacillus pakistanensis LZH-9, a Halotolerant Strain with Excellent COD Removal Capability. Microorganisms, 2020. 8(5). http://doi.org/10.3390/microorganisms8050716
316.
Campbell, I. J., Olmos, J. L., J., Xu, W., Kahanda, D., Atkinson, J. T., Sparks, O. N., Miller, M. D., Phillips, G. N., J., Bennett, G. N., Silberg, J. J., Prochlorococcus phage ferredoxin: Structural characterization and electron transfer to cyanobacterial sulfite reductases. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.013501
317.
Mabanglo, M. F., Huddleston, J. P., Mukherjee, K., Taylor, Z. W., Raushel, F. M., Structure and Reaction Mechanism of YcjR, an Epimerase That Facilitates the Interconversion of d-Gulosides to d-Glucosides in Escherichia coli. Biochemistry, 2020. 59(22): p. 2069-2077. http://doi.org/10.1021/acs.biochem.0c00334
318.
Santos, C. R., Costa, P., Vieira, P. S., Gonzalez, S. E. T., Correa, T. L. R., Lima, E. A., Mandelli, F., Pirolla, R. A. S., Domingues, M. N., Cabral, L., Martins, M. P., Cordeiro, R. L., Junior, A. T., Souza, B. P., Prates, E. T., Gozzo, F. C., Persinoti, G. F., Skaf, M. S., Murakami, M. T., Structural insights into beta-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol, 2020. http://doi.org/10.1038/s41589-020-0554-5
319.
Wang, J., Dai, W., Li, J., Xie, R., Dunstan, R. A., Stubenrauch, C., Zhang, Y., Lithgow, T., PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Res, 2020. http://doi.org/10.1093/nar/gkaa432
320.
Ma, S., Zhang, Q., Linaridin natural products. Nat Prod Rep, 2020. http://doi.org/10.1039/c9np00074g
321.
Sun, S., Pandelia, M. E., The HD-[HD-GYP] Phosphodiesterases; Activities and Evolutionary Diversification within the HD-GYP family. Biochemistry, 2020. http://doi.org/10.1021/acs.biochem.0c00257
322.
Perfumo, A., Freiherr v. S. G. J., Nordmann, E. L., Budisa, N., Wagner, D., Discovery and Characterization of a New Cold-Active Protease From an Extremophilic Bacterium via Comparative Genome Analysis and in vitro Expression. Front Microbiol, 2020. 11: p. 881. http://doi.org/10.3389/fmicb.2020.00881
323.
Lukowski, A. L., Liu, J., Bridwell-Rabb, J., Narayan, A. R. H., Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases. Nat Commun, 2020. 11(1): p. 2991. http://doi.org/10.1038/s41467-020-16729-0
324.
Liu, J., Wei, Y., Lin, L., Teng, L., Yin, J., Lu, Q., Chen, J., Zheng, Y., Li, Y., Xu, R., Zhai, W., Liu, Y., Liu, Y., Cao, P., Ang, E. L., Zhao, H., Yuchi, Z., Zhang, Y., Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A, 2020. http://doi.org/10.1073/pnas.2003434117
325.
Niehs, S. P., Kumpfmuller, J., Dose, B., Little, R. F., Ishida, K., Florez, L. V., Kaltenpoth, M., Hertweck, C., Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl, 2020. http://doi.org/10.1002/anie.202005711
326.
Wang, F., Wei, Y., Lu, Q., Ang, E. L., Zhao, H., Zhang, Y., A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens. Biosci Rep, 2020. 40(7). http://doi.org/10.1042/BSR20201642
327.
Li, A., Laville, E., Tarquis, L., Lombard, V., Ropartz, D., Terrapon, N., Henrissat, B., Guieysse, D., Esque, J., Durand, J., Morgavi, D. P., Potocki-Veronese, G., Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Microb Genom, 2020. http://doi.org/10.1099/mgen.0.000404
328.
Bleckwedel, J., Mohamed, F., Mozzi, F., Raya, R. R., Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol, 2020. http://doi.org/10.1007/s00253-020-10776-9
329.
Conte, J. V., Frantom, P. A., Biochemical characterization of 2-phosphinomethylmalate synthase from Streptomyces hygroscopicus: A member of the DRE-TIM metallolyase superfamily. Arch Biochem Biophys, 2020. 691: p. 108489. http://doi.org/10.1016/j.abb.2020.108489
330.
Grosjean, N., Blaby-Haas, C. E., Leveraging computational genomics to understand the molecular basis of metal homeostasis. New Phytol, 2020. http://doi.org/10.1111/nph.16820
331.
Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La R. S. L., Solden, L. M., Liu, P., Narrowe, A. B., Rodriguez-Ramos, J., Bolduc, B., Gazitua, M. C., Daly, R. A., Smith, G. J., Vik, D. R., Pope, P. B., Sullivan, M. B., Roux, S., Wrighton, K. C., DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res, 2020. 48(16): p. 8883-8900. http://doi.org/10.1093/nar/gkaa621
332.
Dose, B., Ross, C., Niehs, S. P., Scherlach, K., Bauer, J. P., Hertweck, C., Food-Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics*. Angew Chem Int Ed Engl, 2020. 59(48): p. 21535-21540. http://doi.org/10.1002/anie.202009107
333.
Schneider, N. O., Tassoulas, L. J., Zeng, D., Laseke, A. J., Reiter, N. J., Wackett, L. P., Maurice, M. S., Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry, 2020. 59(35): p. 3258-3270. http://doi.org/10.1021/acs.biochem.0c00537
334.
Prahlad, J., Yuan, Y., Lin, J., Chang, C. W., Iwata-Reuyl, D., Liu, Y., de Crecy-Lagard, V., Wilson, M. A., The DUF328 family member YaaA is a DNA-binding protein with a novel fold. J Biol Chem, 2020. http://doi.org/10.1074/jbc.RA120.015055
335.
Morgan, K. T., Zheng, J., McCafferty, D., Discovery of Six Ramoplanin Family Gene Clusters and the Lipoglycodepsipeptide Chersinamycin. Chembiochem, 2020. http://doi.org/10.1002/cbic.202000555
336.
Morgan, K. T., Zheng, J., McCafferty, D. G., Discovery of Six Ramoplanin Family Gene Clusters and the Lipoglycodepsipeptide Chersinamycin*. Chembiochem, 2021. 22(1): p. 176-185. http://doi.org/10.1002/cbic.202000555
337.
Nguyen, T. Q. N., Tooh, Y. W., Sugiyama, R., Nguyen, T. P. D., Purushothaman, M., Leow, L. C., Hanif, K., Yong, R. H. S., Agatha, I., Winnerdy, F. R., Gugger, M., Phan, A. T., Morinaka, B. I., Post-translational formation of strained cyclophanes in bacteria. Nat Chem, 2020. http://doi.org/10.1038/s41557-020-0519-z
338.
Morey, J. R., Kehl-Fie, T. E., Bioinformatic Mapping of Opine-Like Zincophore Biosynthesis in Bacteria. mSystems, 2020. 5(4). http://doi.org/10.1128/mSystems.00554-20
339.
Shi, Q., Wang, H., Liu, J., Li, S., Guo, J., Li, H., Jia, X., Huo, H., Zheng, Z., You, S., Qin, B., Old yellow enzymes: structures and structure-guided engineering for stereocomplementary bioreduction. Appl Microbiol Biotechnol, 2020. 104(19): p. 8155-8170. http://doi.org/10.1007/s00253-020-10845-z
340.
Vogt, M. S., Schmitz, G. F., Varon S. D., Mosch, H. U., Essen, L. O., Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls. Proc Natl Acad Sci U S A, 2020. 117(36): p. 22061-22067. http://doi.org/10.1073/pnas.2010661117
341.
Bushin, L. B., Covington, B. C., Rued, B. E., Federle, M. J., Seyedsayamdost, M. R., Discovery and Biosynthesis of Streptosactin, a Sactipeptide with an Alternative Topology Encoded by Commensal Bacteria in the Human Microbiome. J Am Chem Soc, 2020. http://doi.org/10.1021/jacs.0c05546
342.
Hecht, N., Monteil, C. L., Perriere, G., Vishkautzan, M., Gur, E., Exploring protein space: From hydrolase to ligase by substitution. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa215
343.
Kloosterman, A. M., Shelton, K. E., van W. G. P., Medema, M. H., Mitchell, D. A., RRE-Finder: a Genome-Mining Tool for Class-Independent RiPP Discovery. mSystems, 2020. 5(5). http://doi.org/10.1128/mSystems.00267-20
344.
Foflonker, F., Blaby-Haas, C. E., Co-locality to co-functionality: Eukaryotic gene neighborhoods as a resource for function discovery. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa221
345.
Le C. F., Correia, I., Matheron, L., Babin, M., Moutiez, M., Canu, N., Gondry, M., Lequin, O., Belin, P., In vivo characterization of the activities of novel cyclodipeptide oxidases: new tools for increasing chemical diversity of bioproduced 2,5-diketopiperazines in Escherichia coli. Microb Cell Fact, 2020. 19(1): p. 178. http://doi.org/10.1186/s12934-020-01432-y
346.
Marques, W. L., Anderson, L. A., Sandoval, L., Hicks, M. A., Prather, K. L. J., Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae. Enzyme Microb Technol, 2020. 140: p. 109623. http://doi.org/10.1016/j.enzmictec.2020.109623
347.
Raut, P., Glass, J. B., Lieberman, R. L., Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins, 2020. http://doi.org/10.1002/prot.26009
348.
Pinheiro-Lima, B., Pereira-Carvalho, R. C., Alves-Freitas, D. M. T., Kitajima, E. W., Vidal, A. H., Lacorte, C., Godinho, M. T., Fontenele, R. S., Faria, J. C., Abreu, E. F. M., Varsani, A., Ribeiro, S. G., Melo, F. L., Transmission of the Bean-Associated Cytorhabdovirus by the Whitefly Bemisia tabaci MEAM1. Viruses, 2020. 12(9). http://doi.org/10.3390/v12091028
349.
Levy, H., Fontenele, R. S., Harding, C., Suazo, C., Kraberger, S., Schmidlin, K., Djurhuus, A., Black, C. E., Hart, T., Smith, A. L., Varsani, A., Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses, 2020. 12(9). http://doi.org/10.3390/v12091029
350.
Hendler, A., Akiva, E., Sandhu, M., Goldberg, D., Arbely, E., Jackson, C. J., Aharoni, A., Human SIRT1 multi-specificity is modulated by active-site vicinity substitutions during natural evolution. Mol Biol Evol, 2020. http://doi.org/10.1093/molbev/msaa244
351.
Sikandar, A., Lopatniuk, M., Luzhetskyy, A., Koehnke, J., Non-Heme Monooxygenase ThoJ Catalyzes Thioholgamide beta-Hydroxylation. ACS Chem Biol, 2020. http://doi.org/10.1021/acschembio.0c00637
352.
Goris, M., Puntervoll, P., Rojo, D., Claussen, J., Larsen, O., Garcia-Moyano, A., Almendral, D., Barbas, C., Ferrer, M., Bjerga, G. E. K., Flavin containing monooxygenases for conversion of trimethylamine in salmon protein hydrolysates. Appl Environ Microbiol, 2020. http://doi.org/10.1128/AEM.02105-20
353.
Goris, M., Puntervoll, P., Rojo, D., Claussen, J., Larsen, O., Garcia-Moyano, A., Almendral, D., Barbas, C., Ferrer, M., Bjerga, G. E. K., Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates. Appl Environ Microbiol, 2020. 86(24). http://doi.org/10.1128/AEM.02105-20
354.
Ervin, S. M., Simpson, J. B., Gibbs, M. E., Creekmore, B. C., Lim, L., Walton, W. G., Gharaibeh, R. Z., Redinbo, M. R., Structural Insights into Endobiotic Reactivation by Human Gut Microbiome-Encoded Sulfatases. Biochemistry, 2020. http://doi.org/10.1021/acs.biochem.0c00711
355.
Cogan, D. P., Ly, J., Nair, S. K., Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation. ACS Chem Biol, 2020. http://doi.org/10.1021/acschembio.0c00579
356.
Malik, A., Kim, Y. R., Kim, S. B., Genome Mining of the Genus Streptacidiphilus for Biosynthetic and Biodegradation Potential. Genes (Basel), 2020. 11(10). http://doi.org/10.3390/genes11101166
357.
Liu, Y., Wei, Y., Zhou, Y., Ang, E. L., Zhao, H., Zhang, Y., A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804. Biochem Biophys Res Commun, 2020. http://doi.org/10.1016/j.bbrc.2020.09.124
358.
Stirling, A. J., Gilbert, S. E., Conner, M., Mallette, E., Kimber, M. S., Seah, S. Y. K., A Key Glycine in Bacterial Steroid-Degrading Acyl-CoA Dehydrogenases Allows Flavin-Ring Repositioning and Modulates Substrate Side Chain Specificity. Biochemistry, 2020. 59(42): p. 4081-4092. http://doi.org/10.1021/acs.biochem.0c00568
359.
Wohlgemuth, R., Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol, 2021. 60: p. 113-123. http://doi.org/10.1016/j.nbt.2020.08.006
360.
Sachman-Ruiz, B., Ibarra, J. A., Estrada-de Los Santos, P., Torres M. A., Gimenez, B., Salazar, J. C., Garcia-Angulo, V. A., IurV, Encoded by ORF VCA0231, Is Involved in the Regulation of Iron Uptake Genes in Vibrio cholerae. Genes (Basel), 2020. 11(10). http://doi.org/10.3390/genes11101184
361.
Sartor, P., Bock, J., Hennecke, U., Thierbach, S., Fetzner, S., Modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one and other secondary metabolites by methyltransferases from mycobacteria. FEBS J, 2020. http://doi.org/10.1111/febs.15595
362.
Sartor, P., Bock, J., Hennecke, U., Thierbach, S., Fetzner, S., Modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one and other secondary metabolites by methyltransferases from mycobacteria. FEBS J, 2021. 288(7): p. 2360-2376. http://doi.org/10.1111/febs.15595
363.
Turner, M. E., Huynh, K., Carroll, R. K., Ahn, S. J., Rice, K. C., Characterization of the Streptococcus mutans SMU.1703c-SMU.1702c Operon Reveals its Role in Riboflavin Import and Response to Acid Stress. J Bacteriol, 2020. http://doi.org/10.1128/JB.00293-20
364.
Wu, H., Ioannou, E., Henrissat, B., Montanier, C. Y., Bozonnet, S., O'Donohue, M. J., Dumon, C., Investigating the multi-modularity of a GH10 Xylanase found in termite gut metagenome. Appl Environ Microbiol, 2020. http://doi.org/10.1128/AEM.01714-20
365.
Wu, H., Ioannou, E., Henrissat, B., Montanier, C. Y., Bozonnet, S., O'Donohue, M. J., Dumon, C., Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol, 2021. 87(3). http://doi.org/10.1128/AEM.01714-20
366.
Huttel, W., Muller, M., Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat Prod Rep, 2020. http://doi.org/10.1039/d0np00010h
367.
Stack, T. M. M., Gerlt, J. A., Discovery of novel pathways for carbohydrate metabolism. Curr Opin Chem Biol, 2020. 61: p. 63-70. http://doi.org/10.1016/j.cbpa.2020.09.005
368.
Stack, T. M. M., Gerlt, J. A., Discovery of novel pathways for carbohydrate metabolism. Curr Opin Chem Biol, 2021. 61: p. 63-70. http://doi.org/10.1016/j.cbpa.2020.09.005
369.
Li, L., Liu, Z., Zhang, M., Meng, D., Liu, X., Wang, P., Li, X., Jiang, Z., Zhong, S., Jiang, C., Yin, H., Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. mSystems, 2020. 5(6). http://doi.org/10.1128/mSystems.00867-20
370.
Zhi, Y., Xiang, D. F., Narindoshvili, T., Andrews-Polymenis, H., Raushel, F. M., Deciphering the Aldolase Function of STM3780 from a Bovine Enteric Infection-Related Gene Cluster in Salmonella enterica Serotype Typhimurium. Biochemistry, 2020. 59(48): p. 4573-4580. http://doi.org/10.1021/acs.biochem.0c00768
371.
Kermani, A. A., Macdonald, C. B., Burata, O. E., Ben K. B., Koide, A., Denbaum, E., Koide, S., Stockbridge, R. B., The structural basis of promiscuity in small multidrug resistance transporters. Nat Commun, 2020. 11(1): p. 6064. http://doi.org/10.1038/s41467-020-19820-8
372.
Emmerich, H. J., Saft, M., Schneider, L., Kock, D., Batschauer, A., Essen, L. O., A topologically distinct class of photolyases specific for UV lesions within single-stranded DNA. Nucleic Acids Res, 2020. 48(22): p. 12845-12857. http://doi.org/10.1093/nar/gkaa1147
373.
Melendez, A. B., Valencia, D., Yukl, E. T., Specificity of Interactions between Components of Two Zinc ABC Transporters in Paracoccus denitrificans. Int J Mol Sci, 2020. 21(23). http://doi.org/10.3390/ijms21239098
374.
Quaye, J. A., Gadda, G., Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry, 2020. http://doi.org/10.1021/acs.biochem.0c00832
375.
Zheng, C. J., Kalkreuter, E., Fan, B. Y., Liu, Y. C., Dong, L. B., Shen, B., PtmC Catalyzes the Final Step of Thioplatensimycin, Thioplatencin, and Thioplatensilin Biosynthesis and Expands the Scope of Arylamine N-Acetyltransferases. ACS Chem Biol, 2020. http://doi.org/10.1021/acschembio.0c00773
376.
Chow, J.Y., Choo, K.L.S., Lim, Y.P., Ling, L.H., Nguyen, G.K.T., Xue, B., Chua, N.H., Yew, W.S., Scalable Workflow for Green Manufacturing: Discovery of Bacterial Lipases for Biodiesel Production. ACS Sustainable Chem. Eng., 2021. 9: p. 13450-13459. http://doi.org/10.1021/acssuschemeng.1c03721
377.
Mendauletova, A., Kostenko, A., Lien, Y., Latham, J., How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery. ACS Bio Med Chem Au, 2021. 1: p. xxx-xxx. http://doi.org/10.1021/acsbiomedchemau.1c00045
378.
Li, Y., Shi, T., Han, P., You, C., Thermodynamics-Driven Production of Value-Added d-Allulose from Inexpensive Starch by an In Vitro Enzymatic Synthetic Biosystem. ACS Catal, 2021. 11: p. 5088-5099. http://doi.org/10.1021/acscatal.0c05718
379.
Lu, Q., Wei, Y., Lin, L., Duan, Y. X., Li, Y., Zhai, W., Liu, Y., Ang, E. L., Zhao, H., The Glycyl Radical Enzyme Arylacetate Decarboxylase from Olsenella scatoligenes. ACS Catal, 2021. 11: p. 5789-5794. http://doi.org/10.1021/acscatal.1c01253
380.
Bhatia, R.K., Ullah, S., Hoque, M. Z., Ahmad, I., Yang, Y.-H., Bhatt, A.K., Bhatia, S.K., Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J Environ Chem Eng, 2021. 9. http://doi.org/10.1016/j.jece.2020.104607
381.
Kim, K.H., Chun, B.Y., Kim, J., Jeon, C. O., Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses. Food Control, 2021. 121. http://doi.org/10.1016/j.foodcont.2020.107681
382.
Balo, A.R., Tao, L., Britt, R. D., Characterizing SPASM/twitch Domain-Containing Radical SAM Enzymes by EPR Spectroscopy. Appl Magn Reson, 2021. http://doi.org/10.1007/s00723-021-01406-2
383.
Utami, A., Apriliana, P., Kusnadi, Y., Zilda, D.S., Ilmiah, Z., Lisdiyanti, P., Setyahadi, S., Uria, A.R., Analyzing the biosynthetic potential of antimicrobial-producing actinobacteria originating from Indonesia. Indonesian J Biotechnology, 2021. 26. http://doi.org/10.22146/ijbiotech.65239
384.
Liu, J., Wei, Y., Ma, K. L., An, J., Liu, X., Liu Y., Ang, E.L., Zhao, H., Zhang, Y., Mechanistically Diverse Pathways for Sulfoquinovose Degradation in Bacteria. ACS Catal, 2021. 11(24): p. 14740-14750. http://doi.org/10.1021/acscatal.1c04321
385.
Oberg, N., Precord, T.W., Mitchell, D. A., Gerlt, J. A., RadicalSAM.org: A resource to interpret sequence-function space and discover new radical SAM enzyme chemistry. ACS Bio Med Chem Au, 2021. 2(1): p. 22-35. http://doi.org/10.1021/acsbiomedchemau.1c00048
386.
Hetrick, K. J., Raines, R. T., Assessing and Utilizing Esterase Specificity in Antimicrobial Prodrug Development. Methods Enzymol, 2021. 664: p. 199-220. http://doi.org/10.1016/bs.mie.2021.11.008
387.
Albataineh, H., Duke, M., Misra, S. K., Sharp, J. S., Stevens, D. C., Identification of a solo acylhomoserine lactone synthase from the myxobacterium Archangium gephyra. Scientific Reports, 2021. 11(1). http://doi.org/ARTN 3018 10.1038/s41598-021-82480-1
388.
Khalifeh, A., Blumstein, D. T., Fontenele, R. S., Schmidlin, K., Richet, C., Kraberger, S., Varsani, A., Diverse cressdnaviruses and an anellovirus identified in the fecal samples of yellow-bellied marmots. Virology, 2021. 554: p. 89-96. http://doi.org/10.1016/j.virol.2020.12.017
389.
Singh, A., Schnurer, A., Westerholm, M., Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol, 2021. 23(3): p. 1620-1637. http://doi.org/10.1111/1462-2920.15388
390.
Zallot, R., Oberg, N., Gerlt, J. A., Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Curr Opin Biotechnol, 2021. 69: p. 77-90. http://doi.org/10.1016/j.copbio.2020.12.004
391.
Cheng, J., Ji, W., Ma, S., Ji, X., Deng, Z., Ding, W., Zhang, Q., Characterization and Mechanistic Study of the Radical SAM Enzyme ArsS Involved in Arsenosugar Biosynthesis. Angew Chem Int Ed Engl, 2021. http://doi.org/10.1002/anie.202015177
392.
Gonzalez, J. M., Visualizing the superfamily of metallo-beta-lactamases through sequence similarity network neighborhood connectivity analysis. Heliyon, 2021. 7(1): p. e05867. http://doi.org/10.1016/j.heliyon.2020.e05867
393.
Kautsar, S. A., van der Hooft, J. J. J., de Ridder, D., Medema, M. H., BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience, 2021. 10(1). http://doi.org/10.1093/gigascience/giaa154
394.
McBride, M. J., Pope, S. R., Hu, K., Okafor, C. D., Balskus, E. P., Bollinger, J. M., J., Boal, A. K., Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc Natl Acad Sci U S A, 2021. 118(4). http://doi.org/10.1073/pnas.2015931118
395.
O'Toole, K. H., Imperiali, B., Allen, K. N., Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases. Proc Natl Acad Sci U S A, 2021. 118(4). http://doi.org/10.1073/pnas.2018289118
396.
Qiu, Y., Liu, J., Li, Y., Xue, Y., Liu, W., Formation of an aminovinyl-cysteine residue in thioviridamides occurs through a path independent of known lanthionine synthetase activity. Cell Chem Biol, 2021. http://doi.org/10.1016/j.chembiol.2020.12.016
397.
Saha, B., Karmakar, B., Bhattacharya, S. G., Cloning, expression and immunological characterisation of Coc n 1, the first major allergen from Coconut pollen. Mol Immunol, 2021. 131: p. 33-43. http://doi.org/10.1016/j.molimm.2020.12.026
398.
Koo, C. W., Rosenzweig, A. C., Biochemistry of aerobic biological methane oxidation. Chem Soc Rev, 2021. http://doi.org/10.1039/d0cs01291b
399.
Tisza, M. J., Belford, A. K., Dominguez-Huerta, G., Bolduc, B., Buck, C. B., Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol, 2021. 7(1): p. veaa100. http://doi.org/10.1093/ve/veaa100
400.
Yang, G., Hong, S., Yang, P., Sun, Y., Wang, Y., Zhang, P., Jiang, W., Gu, Y., Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun, 2021. 12(1): p. 790. http://doi.org/10.1038/s41467-021-20974-2
401.
Beliaeva, M. A., Leisinger, F., Seebeck, F. P., In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chem Biol, 2021. http://doi.org/10.1021/acschembio.0c00968
402.
Zhong, A., Lee, Y. H., Liu, Y. N., Liu, H. W., Biosynthesis of Oxetanocin-A Includes a B12-Dependent Radical SAM Enzyme That Can Catalyze both Oxidative Ring Contraction and the Demethylation of SAM. Biochemistry, 2021. 60(7): p. 537-546. http://doi.org/10.1021/acs.biochem.0c00915
403.
Green, S. I., Gu L. C., Yu, X., Gibson, S., Salmen, W., Rajan, A., Carter, H. E., Clark, J. R., Song, X., Ramig, R. F., Trautner, B. W., Kaplan, H. B., Maresso, A. W., Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio, 2021. 12(1). http://doi.org/10.1128/mBio.03474-20
404.
Kotabova, E., Malych, R., Pierella K. J. J., Kazamia, E., Eichner, M., Mach, J., Lesuisse, E., Bowler, C., Prasil, O., Sutak, R., Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability. mSystems, 2021. 6(1). http://doi.org/10.1128/mSystems.00738-20
405.
Purushothaman, M., Sarkar, S., Morita, M., Gugger, M., Schmidt, E. W., Morinaka, B. I., Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase. Angew Chem Int Ed Engl, 2021. 60(15): p. 8460-8465. http://doi.org/10.1002/anie.202015975
406.
Zhang, C., Chen, X., Lee, R. T. C., T, R., Maurer-Stroh, S., Ruhl, M., Bioinformatics-aided identification, characterization and applications of mushroom linalool synthases. Commun Biol, 2021. 4(1): p. 223. http://doi.org/10.1038/s42003-021-01715-z
407.
Riegert, A. S., Raushel, F. M., Functional and Structural Characterization of the UDP-Glucose Dehydrogenase Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry, 2021. 60(9): p. 725-734. http://doi.org/10.1021/acs.biochem.0c00953
408.
Sartorio, M. G., Cortez, N., Gonzalez, J. M., Structure and functional properties of the cold-adapted catalase from Acinetobacter sp. Ver3 native to the Atacama plateau in northern Argentina. Acta Crystallogr D Struct Biol, 2021. 77(Pt 3): p. 369-379. http://doi.org/10.1107/S2059798321000929
409.
Faivre, B., Lombard, M., Fakroun, S., Vo, C. D., Goyenvalle, C., Guerineau, V., Pecqueur, L., Fontecave, M., De Crecy-Lagard, V., Bregeon, D., Hamdane, D., Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biol, 2021. 18(12): p. 2278-2289. http://doi.org/10.1080/15476286.2021.1899653
410.
Liu, A., Si, Y., Dong, S. H., Mahanta, N., Penkala, H. N., Nair, S. K., Mitchell, D. A., Functional elucidation of TfuA in peptide backbone thioamidation. Nat Chem Biol, 2021. 17(5): p. 585-592. http://doi.org/10.1038/s41589-021-00771-0
411.
Dose, B., Niehs, S. P., Scherlach, K., Shahda, S., Florez, L. V., Kaltenpoth, M., Hertweck, C., Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem, 2021. 22(11): p. 1920-1924. http://doi.org/10.1002/cbic.202100089
412.
Tassoulas, L. J., Robinson, A., Martinez-Vaz, B., Aukema, K. G., Wackett, L. P., Filling in the Gaps in Metformin Biodegradation: a New Enzyme and a Metabolic Pathway for Guanylurea. Appl Environ Microbiol, 2021. 87(11). http://doi.org/10.1128/AEM.03003-20
413.
Spence, M. A., Mortimer, M. D., Buckle, A. M., Minh, B. Q., Jackson, C. J., A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Mol Biol Evol, 2021. 38(7): p. 2915-2929. http://doi.org/10.1093/molbev/msab081
414.
Higgins, M. A., Tegl, G., MacDonald, S. S., Arnal, G., Brumer, H., Withers, S. G., Ryan, K. S., N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chem Biol, 2021. 16(4): p. 701-711. http://doi.org/10.1021/acschembio.0c00995
415.
Zhu, C., Xu, B., Adpressa, D. A., Rudolf, J. D., Loesgen, S., Discovery and Biosynthesis of a Structurally Dynamic Antibacterial Diterpenoid. Angew Chem Int Ed Engl, 2021. 60(25): p. 14163-14170. http://doi.org/10.1002/anie.202102453
416.
He, H. Y., Ryan, K. S., Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. Nat Chem, 2021. 13(6): p. 599-606. http://doi.org/10.1038/s41557-021-00656-8
417.
Albanaz, A. T. S., Gerasimov, E. S., Shaw, J. J., Sadlova, J., Lukes, J., Volf, P., Opperdoes, F. R., Kostygov, A. Y., Butenko, A., Yurchenko, V., Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel), 2021. 12(3). http://doi.org/10.3390/genes12030444
418.
Nichols, R. J., LaFrance, B., Phillips, N. R., Radford, D. R., Oltrogge, L. M., Valentin-Alvarado, L. E., Bischoff, A. J., Nogales, E., Savage, D. F., Discovery and characterization of a novel family of prokaryotic nanocompartments involved in sulfur metabolism. Elife, 2021. 10. http://doi.org/10.7554/eLife.59288
419.
Wei, Y., Zhang, Y., Glycyl Radical Enzymes and Sulfonate Metabolism in the Microbiome. Annu Rev Biochem, 2021. 90: p. 817-846. http://doi.org/10.1146/annurev-biochem-080120-024103
420.
Xu, G., Yang, S., Diverse evolutionary origins of microbial [4 + 2]-cyclases in natural product biosynthesis. Int J Biol Macromol, 2021. 182: p. 154-161. http://doi.org/10.1016/j.ijbiomac.2021.04.010
421.
Annaval, T., Ramos-Martin, F., Herrera-Leon, C., Adelaide, M., Antonietti, V., Buchoux, S., Sonnet, P., Sarazin, C., D'Amelio, N., Antimicrobial Bombinin-like Peptide 3 Selectively Recognizes and Inserts into Bacterial Biomimetic Bilayers in Multiple Steps. J Med Chem, 2021. 64(8): p. 5185-5197. http://doi.org/10.1021/acs.jmedchem.1c00310
422.
Hetrick, K. J., Aguilar R. M. A., Raines, R. T., Endogenous Enzymes Enable Antimicrobial Activity. ACS Chem Biol, 2021. 16(5): p. 800-805. http://doi.org/10.1021/acschembio.0c00894
423.
Liu, S. H., Wei, Y. Y., Xing, Y. N., Chen, Y., Wang, W., Wang, K. B., Liang, Y., Jiao, R. H., Zhang, B., Ge, H. M., A BBE-like Oxidase, AsmF, Dictates the Formation of Naphthalenic Hydroxyl Groups in Ansaseomycin Biosynthesis. Org Lett, 2021. 23(9): p. 3724-3728. http://doi.org/10.1021/acs.orglett.1c01101
424.
Vazquez, R., Garcia, E., Garcia, P., Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design. J Virol, 2021. 95(14): p. e0032121. http://doi.org/10.1128/JVI.00321-21
425.
Smith, K., Fielding, R., Schiavone, K., Hall, K. R., Reid, V. S., Boyea, D., Smith, E. L., Schmidlin, K., Fontenele, R. S., Kraberger, S., Varsani, A., Circular DNA viruses identified in short-finned pilot whale and orca tissue samples. Virology, 2021. 559: p. 156-164. http://doi.org/10.1016/j.virol.2021.04.004
426.
Liu, Z., Xiao, F., Cai, S., Liu, C., Li, H., Wu, T., Jiang, Y., Wang, X., Che, Q., Zhu, T., Li, D., Li, W., Effective Generation of Glucosylpiericidins with Selective Cytotoxicities and Insights into Their Biosynthesis. Appl Environ Microbiol, 2021. 87(13): p. e0029421. http://doi.org/10.1128/AEM.00294-21
427.
Zhou, Y., Xu, X., Wei, Y., Cheng, Y., Guo, Y., Khudyakov, I., Liu, F., He, P., Song, Z., Li, Z., Gao, Y., Ang, E. L., Zhao, H., Zhang, Y., Zhao, S., A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science, 2021. 372(6541): p. 512-516. http://doi.org/10.1126/science.abe4882
428.
Fontenele, R. S., Salywon, A. M., Majure, L. C., Cobb, I. N., Bhaskara, A., Avalos-Calleros, J. A., Arguello-Astorga, G. R., Schmidlin, K., Khalifeh, A., Smith, K., Schreck, J., Lund, M. C., Kohler, M., Wojciechowski, M. F., Hodgson, W. C., Puente-Martinez, R., Van D. K., Kumari, S., Oyeniran, K. A., Verniere, C., Filloux, D., Roumagnac, P., Lefeuvre, P., Ribeiro, S. G., Kraberger, S. P., Martin, D. P., Varsani, A., New World Cactaceae Plants Harbor Diverse Geminiviruses. Viruses, 2021. 13(4). http://doi.org/10.3390/v13040694
429.
Stefan, E., Obexer, R., Hofmann, S., Vu H. K., Huang, Y., Morgner, N., Suga, H., Tampe, R., De novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition. Elife, 2021. 10. http://doi.org/10.7554/eLife.67732
430.
Tripathi, P., Bruner, S. D., Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry, 2021. 60(20): p. 1619-1625. http://doi.org/10.1021/acs.biochem.1c00201
431.
Haslinger, K., Hackl, T., Prather, K. L. J., Rapid in vitro prototyping of O-methyltransferases for pathway applications in Escherichia coli. Cell Chem Biol, 2021. 28(6): p. 876-886 e4. http://doi.org/10.1016/j.chembiol.2021.04.010
432.
Witek, W., Sliwiak, J., Ruszkowski, M., Structural and mechanistic insights into the bifunctional HISN2 enzyme catalyzing the second and third steps of histidine biosynthesis in plants. Sci Rep, 2021. 11(1): p. 9647. http://doi.org/10.1038/s41598-021-88920-2
433.
van S. A. D. P., van Z. W. F., Trindade, M., Dicks, L. M. T., Smith, C., Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol, 2021. 87(14): p. e0018621. http://doi.org/10.1128/AEM.00186-21
434.
Reynolds, K. A., Rosa-Molinar, E., Ward, R. E., Zhang, H., Urbanowicz, B. R., Settles, A. M., Accelerating biological insight for understudied genes. Integr Comp Biol, 2021. http://doi.org/10.1093/icb/icab029
435.
Moffat, A. D., Santos-Aberturas, J., Chandra, G., Truman, A. W., A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow. Methods Mol Biol, 2021. 2296: p. 227-247. http://doi.org/10.1007/978-1-0716-1358-0_14
436.
Malit, J. J. L., Wu, C., Liu, L. L., Qian, P. Y., Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. Front Microbiol, 2021. 12: p. 635389. http://doi.org/10.3389/fmicb.2021.635389
437.
Pierella K. J. J., Bowler, C., Biswas, H., Carbon Dioxide Concentration Mechanisms in Natural Populations of Marine Diatoms: Insights From Tara Oceans. Front Plant Sci, 2021. 12: p. 657821. http://doi.org/10.3389/fpls.2021.657821
438.
Chen, M., Rubin, G. M., Jiang, G., Raad, Z., Ding, Y., Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines. J Org Chem, 2021. 86(16): p. 11160-11168. http://doi.org/10.1021/acs.joc.1c00368
439.
Gerlt, J. A., Evolution of Enzyme Function and the Development of Catalytic Efficiency: Triosephosphate Isomerase, Jeremy R. Knowles, and W. John Albery. Biochemistry, 2021. 60(46): p. 3529-3538. http://doi.org/10.1021/acs.biochem.1c00211
440.
Vogt, M. S., Ngouoko N. R. R., Mohr, M. K. F., Albers, S. V., Essen, L. O., Banerjee, A., The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family. J Biol Chem, 2021. 297(1): p. 100820. http://doi.org/10.1016/j.jbc.2021.100820
441.
Walker, A. S., Clardy, J., A Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters. J Chem Inf Model, 2021. 61(6): p. 2560-2571. http://doi.org/10.1021/acs.jcim.0c01304
442.
Krysenko, S., Matthews, A., Busche, T., Bera, A., Wohlleben, W., Poly- and Monoamine Metabolism in Streptomyces coelicolor: The New Role of Glutamine Synthetase-Like Enzymes in the Survival under Environmental Stress. Microb Physiol, 2021. 31(3): p. 233-247. http://doi.org/10.1159/000516644
443.
Manesis, A. C., Jodts, R. J., Hoffman, B. M., Rosenzweig, A. C., Copper binding by a unique family of metalloproteins is dependent on kynurenine formation. Proc Natl Acad Sci U S A, 2021. 118(23). http://doi.org/10.1073/pnas.2100680118
444.
Lim, K. J. H., Lim, Y. P., Hartono, Y. D., Go, M. K., Fan, H., Yew, W. S., Biosynthesis of Nature-Inspired Unnatural Cannabinoids. Molecules, 2021. 26(10). http://doi.org/10.3390/molecules26102914
445.
Diwo, M., Michel, W., Aurass, P., Kuhle-Keindorf, K., Pippel, J., Krausze, J., Wamp, S., Lang, C., Blankenfeldt, W., Flieger, A., NAD(H)-mediated tetramerization controls the activity of Legionella pneumophila phospholipase PlaB. Proc Natl Acad Sci U S A, 2021. 118(23). http://doi.org/10.1073/pnas.2017046118
446.
Medema, M. H., de Rond, T., Moore, B. S., Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet, 2021. 22(9): p. 553-571. http://doi.org/10.1038/s41576-021-00363-7
447.
Kountz, D. J., Balskus, E. P., Leveraging Microbial Genomes and Genomic Context for Chemical Discovery. Acc Chem Res, 2021. 54(13): p. 2788-2797. http://doi.org/10.1021/acs.accounts.1c00100
448.
Grigoreva, A., Andreeva, J., Bikmetov, D., Rusanova, A., Serebryakova, M., Garcia, A. H., Slonova, D., Nair, S. K., Lippens, G., Severinov, K., Dubiley, S., Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience, 2021. 24(5): p. 102480. http://doi.org/10.1016/j.isci.2021.102480
449.
Lachowicz, J. C., Gizzi, A. S., Almo, S. C., Grove, T. L., Structural Insight into the Substrate Scope of Viperin and Viperin-like Enzymes from Three Domains of Life. Biochemistry, 2021. 60(26): p. 2116-2129. http://doi.org/10.1021/acs.biochem.0c00958
450.
Jouanneau, D., Klau, L. J., Larocque, R., Jaffrennou, A., Duval, G., Le D. N., Roret, T., Jeudy, A., Aachmann, F. L., Czjzek, M., Thomas, F., Structure-function analysis of a new PL17 oligoalginate lyase from the marine bacterium Zobellia galactanivorans DsijT. Glycobiology, 2021. 31(10): p. 1364-1377. http://doi.org/10.1093/glycob/cwab058
451.
Crofts, T. S., McFarland, A. G., Hartmann, E. M., Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient Construction of Functional Metagenomic Libraries. mSystems, 2021. http://doi.org/10.1128/mSystems.00524-21
452.
Glass, J. B., Ranjan, P., Kretz, C. B., Nunn, B. L., Johnson, A. M., Xu, M., McManus, J., Stewart, F. J., Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ Microbiol, 2021. 23(8): p. 4646-4660. http://doi.org/10.1111/1462-2920.15656
453.
Li, L., Liu, Z., Zhou, Z., Zhang, M., Meng, D., Liu, X., Huang, Y., Li, X., Jiang, Z., Zhong, S., Drewniak, L., Yang, Z., Li, Q., Liu, Y., Nan, X., Jiang, B., Jiang, C., Yin, H., Comparative Genomics Provides Insights into the Genetic Diversity and Evolution of the DPANN Superphylum. mSystems, 2021. 6(4): p. e0060221. http://doi.org/10.1128/mSystems.00602-21
454.
Liu, C. L., Xue, K., Yang, Y., Liu, X., Li, Y., Lee, T. S., Bai, Z., Tan, T., Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol, 2022. 42(1): p. 73-92. http://doi.org/10.1080/07388551.2021.1924112
455.
Lima, L. F., Torres, A. Q., Jardim, R., Mesquita, R. D., Schama, R., Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics, 2021. 22(1): p. 562. http://doi.org/10.1186/s12864-021-07886-7
456.
Edmonds, K. A., Jordan, M. R., Giedroc, D. P., COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics, 2021. 13(8). http://doi.org/10.1093/mtomcs/mfab046
457.
Jia, B., Han, X., Kim, K. H., Jeon, C. O., Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol, 2022. 40(2): p. 240-254. http://doi.org/10.1016/j.tibtech.2021.06.008
458.
Liu, Y., Pan, S., Zhang, X., Huang, H., In Vitro Reconstitution of the Pantothenic Acid Degradation Pathway in Ochrobactrum anthropi. ACS Chem Biol, 2021. 16(8): p. 1350-1353. http://doi.org/10.1021/acschembio.1c00492
459.
Chou, J. C., Stafford, V. E., Kenney, G. E., Dassama, L. M. K., The enzymology of oxazolone and thioamide synthesis in methanobactin. Methods Enzymol, 2021. 656: p. 341-373. http://doi.org/10.1016/bs.mie.2021.04.008
460.
Pyser, J. B., Chakrabarty, S., Romero, E. O., Narayan, A. R. H., State-of-the-Art Biocatalysis. ACS Cent Sci, 2021. 7(7): p. 1105-1116. http://doi.org/10.1021/acscentsci.1c00273
461.
Kraberger, S., Serieys, L. E., Richet, C., Fountain-Jones, N. M., Baele, G., Bishop, J. M., Nehring, M., Ivan, J. S., Newkirk, E. S., Squires, J. R., Lund, M. C., Riley, S. P., Wilmers, C. C., van H. P. D., Van D. K., Culver, M., VandeWoude, S., Martin, D. P., Varsani, A., Complex evolutionary history of felid anelloviruses. Virology, 2021. 562: p. 176-189. http://doi.org/10.1016/j.virol.2021.07.013
462.
Andreas, M. P., Giessen, T. W., Large-scale computational discovery and analysis of virus-derived microbial nanocompartments. Nat Commun, 2021. 12(1): p. 4748. http://doi.org/10.1038/s41467-021-25071-y
463.
Gama, S. R., Stankovic, T., Hupp, K., Al H. A., McClean, M., Evans, A., Beauchemin, D., Hammerschmidt, F., Pallitsch, K., Zechel, D. L., Biosynthesis of the Fungal Organophosphonate Fosfonochlorin Involves an Iron(II) and 2-(Oxo)glutarate Dependent Oxacyclase. Chembiochem, 2022. 23(2): p. e202100352. http://doi.org/10.1002/cbic.202100352
464.
Tesan, F. C., Lorenzo, R., Alleva, K., Fox, A. R., AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes. Commun Biol, 2021. 4(1): p. 953. http://doi.org/10.1038/s42003-021-02472-9
465.
Grossman, A. S., Mauer, T. J., Forest, K. T., Goodrich-Blair, H., A Widespread Bacterial Secretion System with Diverse Substrates. mBio, 2021. 12(4): p. e0195621. http://doi.org/10.1128/mBio.01956-21
466.
Damle, M. S., Singh, A. N., Peters, S. C., Szalai, V. A., Fisher, O. S., The YcnI protein from Bacillus subtilis contains a copper-binding domain. J Biol Chem, 2021. 297(3): p. 101078. http://doi.org/10.1016/j.jbc.2021.101078
467.
Cheng, B., Guo, H., Wang, H., Zhao, Q., Liu, W., Dissection of the Enzymatic Process for Forming a Central Imidazopiperidine Heterocycle in the Biosynthesis of a Series c Thiopeptide Antibiotic. J Am Chem Soc, 2021. 143(34): p. 13790-13797. http://doi.org/10.1021/jacs.1c05956
468.
Sharaf, N. G., Shahgholi, M., Kim, E., Lai, J. Y., VanderVelde, D. G., Lee, A. T., Rees, D. C., Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that lipidated MetQ is required for interaction. Elife, 2021. 10. http://doi.org/10.7554/eLife.69742
469.
Joshi, J., Li, Q., Garcia-Garcia, J. D., Leong, B. J., Hu, Y., Bruner, S. D., Hanson, A. D., Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases. Biochem J, 2021. 478(17): p. 3265-3279. http://doi.org/10.1042/BCJ20210565
470.
An, J., Wei, Y., Liu, J., Lui A. E., Zhao, H., Zhang, Y., Biochemical Investigation of 3-Sulfopropionaldehyde Reductase HpfD. Chembiochem, 2021. 22(19): p. 2862-2866. http://doi.org/10.1002/cbic.202100316
471.
Simunovic, V., Genomic and molecular evidence reveals novel pathways associated with cell surface polysaccharides in bacteria. FEMS Microbiol Ecol, 2021. 97(9). http://doi.org/10.1093/femsec/fiab119
472.
Beal, H. E., Horenstein, N. A., Comparative genomic analysis of azasugar biosynthesis. AMB Express, 2021. 11(1): p. 120. http://doi.org/10.1186/s13568-021-01279-5
473.
Stubbe, J., Nocera, D. G., Radicals in Biology: Your Life Is in Their Hands. J Am Chem Soc, 2021. 143(34): p. 13463-13472. http://doi.org/10.1021/jacs.1c05952
474.
Baumgartner, J. T., McKinnie, S. M. K., Investigating the Role of Vanadium-Dependent Haloperoxidase Enzymology in Microbial Secondary Metabolism and Chemical Ecology. mSystems, 2021. 6(4): p. e0078021. http://doi.org/10.1128/mSystems.00780-21
475.
Ruskoski, T. B., Boal, A. K., The periodic table of ribonucleotide reductases. J Biol Chem, 2021. 297(4): p. 101137. http://doi.org/10.1016/j.jbc.2021.101137
476.
Eusebio, N., Rego, A., Glasser, N. R., Castelo-Branco, R., Balskus, E. P., Leao, P. N., Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics, 2021. 22(1): p. 633. http://doi.org/10.1186/s12864-021-07939-x
477.
Shi, Q., Jia, Y., Wang, H., Li, S., Li, H., Guo, J., Dou, T., Qin, B., You, S., Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives. Enzyme Microb Technol, 2021. 150: p. 109880. http://doi.org/10.1016/j.enzmictec.2021.109880
478.
Riegert, A. S., Narindoshvili, T., Coricello, A., Richards, N. G. J., Raushel, F. M., Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry, 2021. 60(37): p. 2836-2843. http://doi.org/10.1021/acs.biochem.1c00439
479.
Lee, Y. J., Dai, N., Muller, S. I., Guan, C., Parker, M. J., Fraser, M. E., Walsh, S. E., Sridar, J., Mulholland, A., Nayak, K., Sun, Z., Lin, Y. C., Comb, D. G., Marks, K., Gonzalez, R., Dowling, D. P., Bandarian, V., Saleh, L., Correa, I. R., Weigele, P. R., Pathways of thymidine hypermodification. Nucleic Acids Res, 2021. http://doi.org/10.1093/nar/gkab781
480.
Lee, Y. J., Dai, N., Muller, S. I., Guan, C., Parker, M. J., Fraser, M. E., Walsh, S. E., Sridar, J., Mulholland, A., Nayak, K., Sun, Z., Lin, Y. C., Comb, D. G., Marks, K., Gonzalez, R., Dowling, D. P., Bandarian, V., Saleh, L., Correa, I. R., Weigele, P. R., Pathways of thymidine hypermodification. Nucleic Acids Res, 2022. 50(6): p. 3001-3017. http://doi.org/10.1093/nar/gkab781
481.
De Doncker, M., De Graeve, C., Franceus, J., Beerens, K., Kren, V., Pelantova, H., Vercauteren, R., Desmet, T., Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. Chembiochem, 2021. 22(23): p. 3319-3325. http://doi.org/10.1002/cbic.202100401
482.
Jones, C. V., Jarboe, B. G., Majer, H. M., Ma, A. T., Beld, J., Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol, 2021. 105(20): p. 7785-7799. http://doi.org/10.1007/s00253-021-11546-x
483.
Pan, J., Lian, K., Sarre, A., Leiros, H. S., Williamson, A., Bacteriophage origin of some minimal ATP-dependent DNA ligases: a new structure from Burkholderia pseudomallei with striking similarity to Chlorella virus ligase. Sci Rep, 2021. 11(1): p. 18693. http://doi.org/10.1038/s41598-021-98155-w
484.
Wei, B., Wang, Y. K., Yu, J. B., Wang, S. J., Yu, Y. L., Xu, X. W., Wang, H., Discovery of novel glycoside hydrolases from C-glycoside-degrading bacteria using sequence similarity network analysis. J Microbiol, 2021. 59(10): p. 931-940. http://doi.org/10.1007/s12275-021-1292-4
485.
Ozturk, Y., Blaby-Haas, C. E., Daum, N., Andrei, A., Rauch, J., Daldal, F., Koch, H. G., Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Front Microbiol, 2021. 12: p. 720644. http://doi.org/10.3389/fmicb.2021.720644
486.
Cusick, K., Iturbide, A., Gautam, P., Price, A., Polson, S., MacDonald, M., Erill, I., Enhanced copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated marine coatings. PLoS One, 2021. 16(9): p. e0257800. http://doi.org/10.1371/journal.pone.0257800
487.
Alkin, N., Dunaevsky, Y., Elpidina, E., Beljakova, G., Tereshchenkova, V., Filippova, I., Belozersky, M., Proline-Specific Fungal Peptidases: Genomic Analysis and Identification of Secreted DPP4 in Alkaliphilic and Alkalitolerant Fungi. J Fungi (Basel), 2021. 7(9). http://doi.org/10.3390/jof7090744
488.
Hegemann, J. D., Jeanne D. F. K., Santos-Fernandez, M., Fernandez-Lima, F., A Bifunctional Leader Peptidase/ABC Transporter Protein Is Involved in the Maturation of the Lasso Peptide Cochonodin I from Streptococcus suis. J Nat Prod, 2021. 84(10): p. 2683-2691. http://doi.org/10.1021/acs.jnatprod.1c00514
489.
Castro, I., Costa, H., Turgeman-Grott, I., Allers, T., Mendo, S., Caetano, T., The lanthipeptide biosynthetic clusters of the domain Archaea. Microbiol Res, 2021. 253: p. 126884. http://doi.org/10.1016/j.micres.2021.126884
490.
Tang, Y., Tang, W., Wang, M., Zhang, Z., Chen, Y., A conservative distribution of tridomain NDP-heptose synthetases in actinobacteria. Sci China Life Sci, 2021. http://doi.org/10.1007/s11427-021-2000-2
491.
Starrett, G. J., Tisza, M. J., Welch, N. L., Belford, A. K., Peretti, A., Pastrana, D. V., Buck, C. B., Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol, 2021. 7(1): p. veaa055. http://doi.org/10.1093/ve/veaa055
492.
Li, Q., Zallot, R., MacTavish, B. S., Montoya, A., Payan, D. J., Hu, Y., Gerlt, J. A., Angerhofer, A., de Crecy-Lagard, V., Bruner, S. D., Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry, 2021. 60(42): p. 3152-3161. http://doi.org/10.1021/acs.biochem.1c00164
493.
Chouhan, B. P. S., Gade, M., Martinez, D., Toledo-Patino, S., Laurino, P., Implications of divergence of methionine adenosyltransferase in archaea. FEBS Open Bio, 2022. 12(1): p. 130-145. http://doi.org/10.1002/2211-5463.13312
494.
Russell, A. H., Vior, N. M., Hems, E. S., Lacret, R., Truman, A. W., Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem Sci, 2021. 12(35): p. 11769-11778. http://doi.org/10.1039/d1sc01456k
495.
Li, G., Patel, K., Zhang, Y., Pugmire, J. K., Ding, Y., Bruner, S. D., Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins, 2021. http://doi.org/10.1002/prot.26264
496.
Li, G., Patel, K., Zhang, Y., Pugmire, J. K., Ding, Y., Bruner, S. D., Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins, 2022. 90(3): p. 670-679. http://doi.org/10.1002/prot.26264
497.
Shin, I., Wang, Y., Liu, A., A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A, 2021. 118(43). http://doi.org/10.1073/pnas.2106561118
498.
Damiano, F., Calcagnile, M., Pasanisi, D., Tala, A., Tredici, S. M., Giannotti, L., Siculella, L., Alifano, P., Rid7C, a member of the YjgF/YER057c/UK114 (Rid) protein family, is a novel endoribonuclease that regulates the expression of a specialist RNA polymerase involved in differentiation in Nonomuraea gerenzanensis. J Bacteriol, 2021. http://doi.org/10.1128/JB.00462-21
499.
Damiano, F., Calcagnile, M., Pasanisi, D., Tala, A., Tredici, S. M., Giannotti, L., Siculella, L., Alifano, P., Rid7C, a Member of the YjgF/YER057c/UK114 (Rid) Protein Family, Is a Novel Endoribonuclease That Regulates the Expression of a Specialist RNA Polymerase Involved in Differentiation in Nonomuraea gerenzanensis. J Bacteriol, 2022. 204(2): p. e0046221. http://doi.org/10.1128/JB.00462-21
500.
Rembeza, E., Boverio, A., Fraaije, M. W., Engqvist, M. K. M., Discovery of Two Novel Oxidases Using a High-Throughput Activity Screen. Chembiochem, 2022. 23(2): p. e202100510. http://doi.org/10.1002/cbic.202100510
501.
Custer, J. M., White, R., Taylor, H., Schmidlin, K., Fontenele, R. S., Stainton, D., Kraberger, S., Briskie, J. V., Varsani, A., Diverse single-stranded DNA viruses identified in New Zealand (Aotearoa) South Island robin (Petroica australis) fecal samples. Virology, 2022. 565: p. 38-51. http://doi.org/10.1016/j.virol.2021.10.004
502.
Lewis, J. K., Jochimsen, A. S., Lefave, S. J., Young, A. P., Kincannon, W. M., Roberts, A. G., Kieber-Emmons, M. T., Bandarian, V., New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products. Biochemistry, 2021. 60(45): p. 3347-3361. http://doi.org/10.1021/acs.biochem.1c00469
503.
Bauman, K. D., Butler, K. S., Moore, B. S., Chekan, J. R., Genome mining methods to discover bioactive natural products. Nat Prod Rep, 2021. 38(11): p. 2100-2129. http://doi.org/10.1039/d1np00032b
504.
Fatma, S., Chakravarti, A., Zeng, X., Huang, R. H., Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3',2'-cGAMP as the second messenger. Nat Commun, 2021. 12(1): p. 6381. http://doi.org/10.1038/s41467-021-26738-2
505.
Fakhoury, J. N., Zhang, Y., Edmonds, K. A., Bringas, M., Luebke, J. L., Gonzalez-Gutierrez, G., Capdevila, D. A., Giedroc, D. P., Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Res, 2021. 49(21): p. 12556-12576. http://doi.org/10.1093/nar/gkab1040
506.
Fernandez, R. L., Elmendorf, L. D., Smith, R. W., Bingman, C. A., Fox, B. G., Brunold, T. C., The Crystal Structure of Cysteamine Dioxygenase Reveals the Origin of the Large Substrate Scope of This Vital Mammalian Enzyme. Biochemistry, 2021. 60(48): p. 3728-3737. http://doi.org/10.1021/acs.biochem.1c00463
507.
Ramesh, S., Guo, X., DiCaprio, A. J., De Lio, A. M., Harris, L. A., Kille, B. L., Pogorelov, T. V., Mitchell, D. A., Bioinformatics-Guided Expansion and Discovery of Graspetides. ACS Chem Biol, 2021. 16(12): p. 2787-2797. http://doi.org/10.1021/acschembio.1c00672
508.
Patteson, J. B., Putz, A. T., Tao, L., Simke, W. C., Bryant, L. H., 3rd, Britt, R. D., Li, B., Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science, 2021. 374(6570): p. 1005-1009. http://doi.org/10.1126/science.abj6749
509.
Yu, L., Zhou, W., She, Y., Ma, H., Cai, Y. S., Jiang, M., Deng, Z., Price, N. P. J., Chen, W., Efficient biosynthesis of nucleoside cytokinin angustmycin A containing an unusual sugar system. Nat Commun, 2021. 12(1): p. 6633. http://doi.org/10.1038/s41467-021-26928-y
510.
Xu, B., Li, Z., Alsup, T. A., Ehrenberger, M. A., Rudolf, J. D., Bacterial diterpene synthases prenylate small molecules. ACS Catal, 2021. 11(10): p. 5906-5915. http://doi.org/10.1021/acscatal.1c01113
511.
Robinson, S. L., Piel, J., Sunagawa, S., A roadmap for metagenomic enzyme discovery. Nat Prod Rep, 2021. 38(11): p. 1994-2023. http://doi.org/10.1039/d1np00006c
512.
Hadley, R. C., Zhitnitsky, D., Livnat-Levanon, N., Masrati, G., Vigonsky, E., Rose, J., Ben-Tal, N., Rosenzweig, A. C., Lewinson, O., The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. J Biol Chem, 2021. 298(1): p. 101445. http://doi.org/10.1016/j.jbc.2021.101445
513.
Hadley, R. C., Zhitnitsky, D., Livnat-Levanon, N., Masrati, G., Vigonsky, E., Rose, J., Ben-Tal, N., Rosenzweig, A. C., Lewinson, O., The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. J Biol Chem, 2022. 298(1): p. 101445. http://doi.org/10.1016/j.jbc.2021.101445
514.
Sacca, M. L., Bianchi, G., Lo S. R., Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms, 2021. 9(11). http://doi.org/10.3390/microorganisms9112218
515.
Li, Y., Huang, H., Zhang, X., Identification of catabolic pathway for 1-deoxy-D-sorbitol in Bacillus licheniformis. Biochem Biophys Res Commun, 2022. 586: p. 81-86. http://doi.org/10.1016/j.bbrc.2021.11.072
516.
Xu, J. J., Zhang, X. F., Jiang, Y., Fan, H., Li, J. X., Li, C. Y., Zhao, Q., Yang, L., Hu, Y. H., Martin, C., Chen, X. Y., A unique flavoenzyme operates in ubiquinone biosynthesis in photosynthesis-related eukaryotes. Sci Adv, 2021. 7(50): p. eabl3594. http://doi.org/10.1126/sciadv.abl3594
517.
Wiltsie, V., Travis, S., Shay, M. R., Simmons, Z., Frantom, P., Thompson, M. K., Structural and functional characterization of fosfomycin resistance conferred by FosB from Enterococcus faecium. Protein Sci, 2021. http://doi.org/10.1002/pro.4253
518.
Wiltsie, V., Travis, S., Shay, M. R., Simmons, Z., Frantom, P., Thompson, M. K., Structural and functional characterization of fosfomycin resistance conferred by FosB from Enterococcus faecium. Protein Sci, 2022. 31(3): p. 580-590. http://doi.org/10.1002/pro.4253
519.
Zhang, Y., Hong, Z., Zhou, L., Zhang, Z., Tang, T., Guo, E., Zheng, J., Wang, C., Dai, L., Si, T., Wang, H., Biosynthesis of Gut-Microbiota-Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl, 2021. http://doi.org/10.1002/anie.202114414
520.
Major, D., Flanzbaum, L., Lussier, L., Davies, C., Caldo, K. M. P., Acedo, J. Z., Transporter Protein-Guided Genome Mining for Head-to-Tail Cyclized Bacteriocins. Molecules, 2021. 26(23). http://doi.org/10.3390/molecules26237218
521.
Zhang, Y., Hong, Z., Zhou, L., Zhang, Z., Tang, T., Guo, E., Zheng, J., Wang, C., Dai, L., Si, T., Wang, H., Biosynthesis of Gut-Microbiota-Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl, 2022. 61(6): p. e202114414. http://doi.org/10.1002/anie.202114414
522.
Lin, S., Zhang, H., Wang, X., Lin, T., Chen, Z., Liu, J., Wang, J., Abundance of Lipopolysaccharide Heptosyltransferase I in Human Gut Microbiome and Its Association With Cardiovascular Disease and Liver Cirrhosis. Front Microbiol, 2021. 12: p. 756976. http://doi.org/10.3389/fmicb.2021.756976
523.
Schulke, K. H., Ospina, F., Hornschemeyer, K., Gergel, S., Hammer, S. C., Substrate Profiling of Anion Methyltransferases for Promiscuous Synthesis of S-Adenosylmethionine Analogs from Haloalkanes. Chembiochem, 2021. http://doi.org/10.1002/cbic.202100632
524.
Schulke, K. H., Ospina, F., Hornschemeyer, K., Gergel, S., Hammer, S. C., Substrate Profiling of Anion Methyltransferases for Promiscuous Synthesis of S-Adenosylmethionine Analogs from Haloalkanes. Chembiochem, 2022. 23(4): p. e202100632. http://doi.org/10.1002/cbic.202100632
525.
Wu, H., Crost, E. H., Owen, C. D., van B. W., Martinez G. A., Latousakis, D., Hicks, T., Walpole, S., Urbanowicz, P. A., Ndeh, D., Monaco, S., Sanchez S. L., Griffiths, R., Reynolds, R. S., Colvile, A., Spencer, D. I. R., Walsh, M., Angulo, J., Juge, N., The human gut symbiont Ruminococcus gnavus shows specificity to blood group A antigen during mucin glycan foraging: Implication for niche colonisation in the gastrointestinal tract. PLoS Biol, 2021. 19(12): p. e3001498. http://doi.org/10.1371/journal.pbio.3001498
526.
Chrzastek, K., Kraberger, S., Schmidlin, K., Fontenele, R. S., Kulkarni, A., Chappell, L., Dufour-Zavala, L., Kapczynski, D. R., Varsani, A., Diverse Single-Stranded DNA Viruses Identified in Chicken Buccal Swabs. Microorganisms, 2021. 9(12). http://doi.org/10.3390/microorganisms9122602
527.
Riegert, A. S., Narindoshvili, T., Raushel, F. M., Discovery and Functional Characterization of a Clandestine ATP-Dependent Amidoligase in the Biosynthesis of the Capsular Polysaccharide from Campylobacter jejuni. Biochemistry, 2022. 61(2): p. 117-124. http://doi.org/10.1021/acs.biochem.1c00707
528.
Maphatsoe, M. M., Hashem, C., Ling, J. G., Horvat, M., Rumbold, K., Bakar, F. D. A., Winkler, M., Characterization and immobilization of Pycnoporus cinnabarinus carboxylic acid reductase, PcCAR2. J Biotechnol, 2021. 345: p. 47-54. http://doi.org/10.1016/j.jbiotec.2021.12.010
529.
Maphatsoe, M. M., Hashem, C., Ling, J. G., Horvat, M., Rumbold, K., Bakar, F. D. A., Winkler, M., Characterization and immobilization of Pycnoporus cinnabarinus carboxylic acid reductase, PcCAR2. J Biotechnol, 2022. 345: p. 47-54. http://doi.org/10.1016/j.jbiotec.2021.12.010
530.
Reithofer, V., Fernandez-Pereira, J., Alvarado, M., de Groot, P., Essen, L. O., A novel class of Candida glabrata cell wall proteins with beta-helix fold mediates adhesion in clinical isolates. PLoS Pathog, 2021. 17(12): p. e1009980. http://doi.org/10.1371/journal.ppat.1009980
531.
Happel, A. U., Balle, C., Maust, B. S., Konstantinus, I. N., Gill, K., Bekker, L. G., Froissart, R., Passmore, J. A., Karaoz, U., Varsani, A., Jaspan, H., Presence and Persistence of Putative Lytic and Temperate Bacteriophages in Vaginal Metagenomes from South African Adolescents. Viruses, 2021. 13(12). http://doi.org/10.3390/v13122341
532.
Cheng, J., Liu, W.-Q., Zhu, X. F., Zhang, Q., Functional Diversity of HemN-like Proteins. ACS Bio Med Chem Au, 2022. 1: p. xxx-xxx. http://doi.org/10.1021/acsbiomedchemau.1c00058
533.
Hubrich, F., Bosch, N.M., Chepkirui,, C., Morinaka, B., Rust, M., Gugger, M., Robinson, S. L., Vagstad, A. L., Piel, J., Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc Natl Acad Sci U S A, 2022. 119. http://doi.org/10.1073/pnas.2113120119
534.
Bridwell-Rabb, J., Li, B., Drennan, C. L., Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions. ACS Bio Med Chem Au, 2022. 1. http://doi.org/10.1021/acsbiomedchemau.1c00051
535.
Ayva, C.E., Fiorito, M.M., Guo, Z., Selvakumar, E., Kaczmarski, J.A., Gagoski, D., Walden, P., Johnston, W.A., Jackson, C. J., Nebl, T., Alexandrov, K., Exploring Performance Parameters of Artificial Allosetric Protein Switches. J Mol Biol, 2022. http://doi.org/10.1016/j.jmb.2022.167678
536.
Yan, Q., Huang, H., Zhang, X., In Vitro Reconstitution of a Bacterial Ergothioneine Sulfonate Catabolic Pathway. ACS Catal, 2022. 12(9): p. 4825-4832. http://doi.org/10.1021/acscatal.2c00169
537.
Borisenko, I., Daugavet, M., Ereskovsky, A., Lavrov, A., Podgornaya, O., Novel protein from larval sponge cells, ilborin, is related to energy turnover and calcium binding and is conserved among marine invertebrates. Open Biology, 2022. http://doi.org/10.1098/rsob.210336
538.
Clark, K. A., Bushin, L. B., Seyedsayamdost, M. R., RaS-RiPPs in Streptococci and the Human Microbiome. ACS Bio Med Chem Au, 2022. http://doi.org/10.1021/acsbiomedchemau.2c00004
539.
Saati-Santamaria, Z., Selem-Mojica, N., Peral-Aranega, E., Rivas, R., Garcia-Fraile, P., Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microb Genom, 2022. 8. http://doi.org/10.1099/mgen.0.000758
540.
Han, Y., Ma, S., Zhang, Q., Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB. Chinese Chemical Letters, 2022. http://doi.org/10.1016/j.cclet.2022.06.012
541.
Du, A., Ying, T., Zhou, Z., Yu, G., Luo, X., Ma, M., Yu, U., Wang, H., Wei, B., Non-ribosomal peptide biosynthetic potential of the nematode symbiont Photorhabdus. , 2022. http://doi.org/10.1111/1758-2229.13118
542.
Niehs, S. P., Scherlach, K., Dose, B., Uzum, Z., Stinear, T. P., Pidot, S. J., Hertweck, C., A Highly Conserved Gene Locus in Endofungal Bacteria Codes for the Biosynthesis of Symbiosis-Specific Cyclopeptides. PNAS Nexus, 2022. http://doi.org/10.1093/pnasnexus/pgac152
543.
Neti, S.S., Sil, D., Warui, D.M., Esakova, O.A., Solinski, A.E., Serrano, D.A., Krebs, C., Booker, S. J., Characterization of LipS1 and LipS2 from Thermococcus kodakarensis : Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor. ACS Bio & Med Chem Au, 2022. http://doi.org/10.1021/acsbiomedchemau.2c00018
544.
Walker, M.E., Simpson, J. B., Redinbo, M. R., A structural metagenomics pipeline for examining the gut microbiome. Current Opinion in Structural Biology, 2022. 75. http://doi.org/10.1016/j.sbi.2022.102416
545.
Zhang, Y., Hamada, K., Nguyen, D.T., Inoue, S., Satake, M., Kobayashi, S., Okada, C., Ogata, K., Okada, M., Sengoku, T., Goto, Y., Suga, H., LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nature Catalysis, 2022. 5: p. 682-693. http://doi.org/10.1038/s41929-022-00822-2
546.
Wu, R., Ding, W., Zhang, Q., Consecutive Methylation Catalyzed by TsrM, an Atypical Class B Radical SAM Methylase. Chinese J Chemistry, 2022. 40: p. 1693-1698. http://doi.org/10.1002/cjoc.202200174
547.
Mendauletova, A., Kostenko, A., Lien, Y., Latham, J., How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery. ACS Bio & Med Chem Au, 2022. 2(1): p. 53-59. http://doi.org/10.1021/acsbiomedchemau.1c00045
548.
Thareja, P., Chhillar, R.S., A Detailed Survey on Data Mining Based Optimization Schemes for Bioinformatics Applications. ECS Transactions, 2022. 107(1): p. 4689-4696. http://doi.org/10.1149/10701.4689ecs
549.
Warui, D.M., Sil, D., Lee, K.-H., Neti, S.S., Esakova, O.A., Knox, H. L., Krebs, C., Booker, S. J., In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS Bio & Med Chem Au, 2022. http://doi.org/10.1021/acsbiomedchemau.2c00020
550.
Vasina, M., Vanacek, P., Hon, J., Kovar, D., Faldkynova, H., Kunka, A., Buryska, T., Badenhorst, C.P.S., Mazurenko, S., Bednar, D., Stavrakis, S., Bornscheuer, U.T., deMello, A., Damborsky, J., Prokop, Z., Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem Catalysis, 2022. 2(10): p. 2704-2725. http://doi.org/10.1016/j.checat.2022.09.011
551.
Salez, M.A., Gonzalez, J. M., Bernacchini, J.C., Rodriguez, M.V., Ferreyra, M.L.F., Casati, P., Rius, S.P., SbTT8, a New Sorghum bHLH Transcription Factor that Rescues Brown Seed Coat Phenotype in Arabidopsis tt8 Mutant Plants. J Plant Biology, 2022. 65(6): p. 473-485. http://doi.org/10.1007/s12374-022-09365-2
552.
Stowell, E.A., Ehrenberger, M. A., Link, Y.L., Chang, C.-Y., Rudolf, J. D., Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Commun Chem, 2022. 5. http://doi.org/10.1038/s42004-022-00765-6
553.
Scott, T. A., Verest, M., Farnung, J., Forneris, C.C., Robinson, S. L., Ji, X., Hubrich, F., Chepkirui, C., Richter, D.U., Huber, S., Rust, P., Streiff, A.B., Zhang, Q., Bode, J.W., Piel, J., Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. Chem, 2022. 8(10): p. P2659-2677. http://doi.org/10.1016/j.chempr.2022.09.017
554.
Booker, S. J., Lloyd, C. T., Twenty Years of Radical SAM! The Genesis of the Superfamily. ACS Bio & Med Chem Au, 2022. 2(6): p. 538-547. http://doi.org/10.1021/acsbiomedchemau.2c00078
555.
Cortes-Albayay, C., Sangal, V., Klenk, H. P., Nouioui, I., Comparative Genomic Study of Vinyl Chloride Cluster and Description of Novel Species, Mycolicibacterium vinylchloridicum sp. nov. Front Microbiol, 2021. 12: p. 767895. http://doi.org/10.3389/fmicb.2021.767895
556.
Pepi, M. J., Chacko, S., Marqus, G. M., Singh, V., Wang, Z., Planck, K., Cullinane, R. T., Meka, P. N., Gollapalli, D. R., Ioerger, T. R., Rhee, K. Y., Cuny, G. D., Boshoff, H. I. M., Hedstrom, L., A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infect Dis, 2022. http://doi.org/10.1021/acsinfecdis.1c00461
557.
Zhang, J. M., Liu, X., Wei, Q., Ma, C., Li, D., Zou, Y., Berberine bridge enzyme-like oxidase-catalysed double bond isomerization acts as the pathway switch in cytochalasin synthesis. Nat Commun, 2022. 13(1): p. 225. http://doi.org/10.1038/s41467-021-27931-z
558.
Back, D., Shaffer, B. T., Loper, J. E., Philmus, B., Untargeted Identification of Alkyne-Containing Natural Products Using Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reactions Coupled to LC-MS/MS. J Nat Prod, 2022. 85(1): p. 105-114. http://doi.org/10.1021/acs.jnatprod.1c00798
559.
Cho, H., Lee, H., Hong, K., Chung, H., Song, I., Lee, J. S., Kim, S., Bioinformatic Expansion of Borosins Uncovers Trans-Acting Peptide Backbone N-Methyltransferases in Bacteria. Biochemistry, 2022. 61(3): p. 183-194. http://doi.org/10.1021/acs.biochem.1c00764
560.
Mandela, E., Stubenrauch, C. J., Ryoo, D., Hwang, H., Cohen, E. J., Torres, V. L., Deo, P., Webb, C. T., Huang, C., Schittenhelm, R. B., Beeby, M., Gumbart, J. C., Lithgow, T., Hay, I. D., Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. Elife, 2022. 11. http://doi.org/10.7554/eLife.73516
561.
Pierella K. J. J., Pelletier, E., Zinger, L., Lombard, F., Zingone, A., Colin, S., Gasol, J. M., Dorrell, R. G., Henry, N., Scalco, E., Acinas, S. G., Wincker, P., de Vargas, C., Bowler, C., A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour, 2022. http://doi.org/10.1111/1755-0998.13592
562.
Huang, T., Zhou, Z., Wei, M., Chen, L., Xiao, Z., Deng, Z., Lin, S., Characterization of Pyridomycin B Reveals the Formation of Functional Groups in Antimycobacterial Pyridomycin. Appl Environ Microbiol, 2022. 88(6): p. e0203521. http://doi.org/10.1128/AEM.02035-21
563.
Pierella K. J. J., Pelletier, E., Zinger, L., Lombard, F., Zingone, A., Colin, S., Gasol, J. M., Dorrell, R. G., Henry, N., Scalco, E., Acinas, S. G., Wincker, P., de Vargas, C., Bowler, C., A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour, 2023. 23(1): p. 16-40. http://doi.org/10.1111/1755-0998.13592
564.
Knox, H. L., Sinner, E. K., Townsend, C. A., Boal, A. K., Booker, S. J., Structure of a B12-dependent radical SAM enzyme in carbapenem biosynthesis. Nature, 2022. 602(7896): p. 343-348. http://doi.org/10.1038/s41586-021-04392-4
565.
Fyfe, C. D., Bernardo-Garcia, N., Fradale, L., Grimaldi, S., Guillot, A., Brewee, C., Chavas, L. M. G., Legrand, P., Benjdia, A., Berteau, O., Crystallographic snapshots of a B12-dependent radical SAM methyltransferase. Nature, 2022. 602(7896): p. 336-342. http://doi.org/10.1038/s41586-021-04355-9
566.
Wong, G., Lim, L. R., Tan, Y. Q., Go, M. K., Bell, D. J., Freemont, P. S., Yew, W. S., Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nat Commun, 2022. 13(1): p. 712. http://doi.org/10.1038/s41467-022-28386-6
567.
Adak, S., Lukowski, A. L., Schafer, R. J. B., Moore, B. S., From Tryptophan to Toxin: Nature's Convergent Biosynthetic Strategy to Aetokthonotoxin. J Am Chem Soc, 2022. http://doi.org/10.1021/jacs.1c12778
568.
Ueda, C., Langton, M., Chen, J., Pandelia, M. E., The HBx protein from Hepatitis B Virus coordinates a redox-active Fe-S cluster. J Biol Chem, 2022. http://doi.org/10.1016/j.jbc.2022.101698
569.
Singh, B. K., Biswas, R., Bhattacharyya, S., Basak, A., Das, A. K., The C-terminal end of mycobacterial HadBC regulates AcpM interaction during the FAS-II pathway: a structural perspective. FEBS J, 2022. http://doi.org/10.1111/febs.16405
570.
Chen, X., Bradley, N. P., Lu, W., Wahl, K. L., Zhang, M., Yuan, H., Hou, X. F., Eichman, B. F., Tang, G. L., Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance. Nucleic Acids Res, 2022. 50(5): p. 2417-2430. http://doi.org/10.1093/nar/gkac085
571.
Jia, B., Kim, K. H., Ruan, W., Kim, H. M., Jeon, C. O., Lantibiotic-encoding Streptococcus in the human microbiome are underlying risk factors for liver diseases. J Infect, 2022. 84(5): p. e70-e72. http://doi.org/10.1016/j.jinf.2022.02.020
572.
Barland, N., Rueff, A. S., Cebrero, G., Hutter, C. A. J., Seeger, M. A., Veening, J. W., Perez, C., Mechanistic basis of choline import involved in teichoic acids and lipopolysaccharide modification. Sci Adv, 2022. 8(9): p. eabm1122. http://doi.org/10.1126/sciadv.abm1122
573.
Zetzsche, L. E., Yazarians, J. A., Chakrabarty, S., Hinze, M. E., Murray, L. A. M., Lukowski, A. L., Joyce, L. A., Narayan, A. R. H., Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature, 2022. 603(7899): p. 79-85. http://doi.org/10.1038/s41586-021-04365-7
574.
Cao, R., Wu, X., Wang, Q., Qi, P., Zhang, Y., Wang, L., Sun, C., Characterization of gamma-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS Omega, 2022. 7(8): p. 7229-7239. http://doi.org/10.1021/acsomega.1c06792
575.
Zhang, S. S., Xiong, J., Cui, J. J., Ma, K. L., Wu, W. L., Li, Y., Luo, S., Gao, K., Dong, S. H., Lanthipeptides from the Same Core Sequence: Characterization of a Class II Lanthipeptide Synthetase from Microcystis aeruginosa NIES-88. Org Lett, 2022. 24(11): p. 2226-2231. http://doi.org/10.1021/acs.orglett.2c00573
576.
Hemmerling, F., Piel, J., Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov, 2022. 21(5): p. 359-378. http://doi.org/10.1038/s41573-022-00414-6
577.
Imani, A. S., Lee, A. R., Vishwanathan, N., de Waal, F., Freeman, M. F., Diverse Protein Architectures and alpha-N-Methylation Patterns Define Split Borosin RiPP Biosynthetic Gene Clusters. ACS Chem Biol, 2022. 17(4): p. 908-917. http://doi.org/10.1021/acschembio.1c01002
578.
Kincannon, W. M., Zahn, M., Clare, R., Lusty B. J., Romberg, A., Larson, J., Bothner, B., Beckham, G. T., McGeehan, J. E., DuBois, J. L., Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc Natl Acad Sci U S A, 2022. 119(13): p. e2121426119. http://doi.org/10.1073/pnas.2121426119
579.
Hetrick, K. J., Raines, R. T., Assessing and utilizing esterase specificity in antimicrobial prodrug development. Methods Enzymol, 2022. 664: p. 199-220. http://doi.org/10.1016/bs.mie.2021.11.008
580.
Li, A., Benkoulouche, M., Ladeveze, S., Durand, J., Cioci, G., Laville, E., Potocki-Veronese, G., Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci, 2022. 23(6). http://doi.org/10.3390/ijms23063043
581.
Orban, A. M., Ruhl, M., Identification of volatile producing enzymes in higher fungi: Combining analytical and bioinformatic methods. Methods Enzymol, 2022. 664: p. 221-242. http://doi.org/10.1016/bs.mie.2021.12.007
582.
Yan, Q., Cordell, W. T., Jindra, M. A., Courtney, D. K., Kuckuk, M. K., Chen, X., Pfleger, B. F., Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity. Nat Commun, 2022. 13(1): p. 1619. http://doi.org/10.1038/s41467-022-29218-3
583.
Ulrich, E. C., Drennan, C. L., The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts. J Am Chem Soc, 2022. 144(13): p. 5673-5684. http://doi.org/10.1021/jacs.1c12064
584.
Li, B., Jo, M., Liu, J., Tian, J., Canfield, R., Bridwell-Rabb, J., Structural and mechanistic basis for redox sensing by the cyanobacterial transcription regulator RexT. Commun Biol, 2022. 5(1): p. 275. http://doi.org/10.1038/s42003-022-03226-x
585.
Sarksian, R., Hegemann, J. D., Simon, M. A., Acedo, J. Z., van der Donk, W. A., Unexpected Methyllanthionine Stereochemistry in the Morphogenetic Lanthipeptide SapT. J Am Chem Soc, 2022. 144(14): p. 6373-6382. http://doi.org/10.1021/jacs.2c00517
586.
Vazquez, R., Seoane-Blanco, M., Rivero-Buceta, V., Ruiz, S., van R. M. J., Garcia, P., Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain. Acta Crystallogr D Struct Biol, 2022. 78(Pt 4): p. 435-454. http://doi.org/10.1107/S2059798322000936
587.
Kostenko, A., Lien, Y., Mendauletova, A., Ngendahimana, T., Novitskiy, I. M., Eaton, S. S., Latham, J. A., Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes. J Biol Chem, 2022. 298(5): p. 101881. http://doi.org/10.1016/j.jbc.2022.101881
588.
Dent, M. R., Roberts, M. G., Bowman, H. E., Weaver, B. R., McCaslin, D. R., Burstyn, J. N., Quaternary Structure and Deoxyribonucleic Acid-Binding Properties of the Heme-Dependent, CO-Sensing Transcriptional Regulator PxRcoM. Biochemistry, 2022. 61(8): p. 678-688. http://doi.org/10.1021/acs.biochem.2c00086
589.
Khaledian, E., Ulusan, S., Erickson, J., Fawcett, S., Letko, M. C., Broschat, S. L., Sequence determinants of human-cell entry identified in ACE2-independent bat sarbecoviruses: A combined laboratory and computational network science approach. EBioMedicine, 2022. 79: p. 103990. http://doi.org/10.1016/j.ebiom.2022.103990
590.
Gonzalez, J. M., Marti-Arbona, R., Chen, J. C. H., Unkefer, C. J., The structure of Synechococcus elongatus enolase reveals key aspects of phosphoenolpyruvate binding. Acta Crystallogr F Struct Biol Commun, 2022. 78(Pt 4): p. 177-184. http://doi.org/10.1107/S2053230X22003612
591.
Liu, Y., Wei, Y., Teh, T. M., Liu, D., Zhou, Y., Zhao, S., Ang, E. L., Zhao, H., Zhang, Y., Identification and Characterization of the Biosynthetic Pathway of the Sulfonolipid Capnine. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00102
592.
Kim, H. J., Ishida, K., Ishida-Ito, M., Hertweck, C., Sequential Allylic Alcohol Formation by a Multifunctional Cytochrome P450 Monooxygenase with Rare Redox Partners. Angew Chem Int Ed Engl, 2022. 61(26): p. e202203264. http://doi.org/10.1002/anie.202203264
593.
Adamo, M., Comtet-Marre, S., Buttner, E., Kellner, H., Luis, P., Vallon, L., Prego, R., Hofrichter, M., Girlanda, M., Peyret, P., Marmeisse, R., Fungal dye-decolorizing peroxidase diversity: roles in either intra- or extracellular processes. Appl Microbiol Biotechnol, 2022. 106(8): p. 2993-3007. http://doi.org/10.1007/s00253-022-11923-0
594.
Zheng, Y., Cong, Y., Schmidt, E. W., Nair, S. K., Catalysts for the Enzymatic Lipidation of Peptides. Acc Chem Res, 2022. 55(9): p. 1313-1323. http://doi.org/10.1021/acs.accounts.2c00108
595.
Hou, L., Tian, H. Y., Wang, L., Ferris, Z. E., Wang, J., Cai, M., Older, E. A., Raja, M. R. K., Xue, D., Sun, W., Nagarkatti, P., Nagarkatti, M., Chen, H., Fan, D., Tang, X., Li, J., Identification and Biosynthesis of Pro-Inflammatory Sulfonolipids from an Opportunistic Pathogen Chryseobacterium gleum. ACS Chem Biol, 2022. 17(5): p. 1197-1206. http://doi.org/10.1021/acschembio.2c00141
596.
Guo, S., Wang, S., Ma, S., Deng, Z., Ding, W., Zhang, Q., Radical SAM-dependent ether crosslink in daropeptide biosynthesis. Nat Commun, 2022. 13(1): p. 2361. http://doi.org/10.1038/s41467-022-30084-2
597.
Macdonald, S. S., Pereira, J. H., Liu, F., Tegl, G., DeGiovanni, A., Wardman, J. F., Deutsch, S., Yoshikuni, Y., Adams, P. D., Withers, S. G., A Synthetic Gene Library Yields a Previously Unknown Glycoside Phosphorylase That Degrades and Assembles Poly-beta-1,3-GlcNAc, Completing the Suite of beta-Linked GlcNAc Polysaccharides. ACS Cent Sci, 2022. 8(4): p. 430-440. http://doi.org/10.1021/acscentsci.1c01570
598.
Langton, M., Appell, M., Koob, J., Pandelia, M. E., Domain Fusion of Two Oxygenases Affords Organophosphonate Degradation in Pathogenic Fungi. Biochemistry, 2022. 61(11): p. 956-962. http://doi.org/10.1021/acs.biochem.2c00163
599.
Castillo A. R. D., Garrido, L. M., Pedre, B., Helmle, I., Gross, H., Gust, B., Padilla, G., Mycothiol Peroxidase Activity as a Part of the Self-Resistance Mechanisms against the Antitumor Antibiotic Cosmomycin D. Microbiol Spectr, 2022. 10(3): p. e0049322. http://doi.org/10.1128/spectrum.00493-22
600.
Balo, A. R., Tao, L., Britt, R. D., Characterizing SPASM/twitch Domain-Containing Radical SAM Enzymes by EPR Spectroscopy. Appl Magn Reson, 2022. 53(3-5): p. 809-820. http://doi.org/10.1007/s00723-021-01406-2
601.
Lancaster, E. B., Yang, W., Johnson, W. H., J., Baas, B. J., Zhang, Y. J., Whitman, C. P., Kinetic, Inhibition, and Structural Characterization of a Malonate Semialdehyde Decarboxylase-like Protein from Calothrix sp. PCC 6303: A Gateway to the non-Pro1 Tautomerase Superfamily Members. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00101
602.
Zhang, N., Wu, J., Zhang, S., Yuan, M., Xu, H., Li, J., Zhang, P., Wang, M., Kempher, M. L., Tao, X., Zhang, L. Q., Ge, H., He, Y. X., Molecular basis for coordinating secondary metabolite production by bacterial and plant signaling molecules. J Biol Chem, 2022. 298(6): p. 102027. http://doi.org/10.1016/j.jbc.2022.102027
603.
Pasquini, M., Grosjean, N., Hixson, K. K., Nicora, C. D., Yee, E. F., Lipton, M., Blaby, I. K., Haley, J. D., Blaby-Haas, C. E., Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep, 2022. 39(7): p. 110834. http://doi.org/10.1016/j.celrep.2022.110834
604.
Zeng, Z., Chen, Y., Pinilla-Redondo, R., Shah, S. A., Zhao, F., Wang, C., Hu, Z., Wu, C., Zhang, C., Whitaker, R. J., She, Q., Han, W., A short prokaryotic Argonaute activates membrane effector to confer antiviral defense. Cell Host Microbe, 2022. 30(7): p. 930-943 e6. http://doi.org/10.1016/j.chom.2022.04.015
605.
Zhang, Y., Martin, J. E., Edmonds, K. A., Winkler, M. E., Giedroc, D. P., SifR is an Rrf2-family quinone sensor associated with catechol iron uptake in Streptococcus pneumoniae D39. J Biol Chem, 2022. 298(7): p. 102046. http://doi.org/10.1016/j.jbc.2022.102046
606.
Bikmetov, D., Hall, A. M. J., Livenskyi, A., Gollan, B., Ovchinnikov, S., Gilep, K., Kim, J. Y., Larrouy-Maumus, G., Zgoda, V., Borukhov, S., Severinov, K., Helaine, S., Dubiley, S., GNAT toxins evolve toward narrow tRNA target specificities. Nucleic Acids Res, 2022. 50(10): p. 5807-5817. http://doi.org/10.1093/nar/gkac356
607.
Duan, Y., Wei, Y., Xing, M., Liu, J., Jiang, L., Lu, Q., Liu, X., Liu, Y., Ang, E. L., Liao, R. Z., Yuchi, Z., Zhao, H., Zhang, Y., Anaerobic Hydroxyproline Degradation Involving C-N Cleavage by a Glycyl Radical Enzyme. J Am Chem Soc, 2022. 144(22): p. 9715-9722. http://doi.org/10.1021/jacs.2c01673
608.
Zhang, J., Hou, X., Chen, Z., Ko, Y., Ruszczycky, M. W., Chen, Y., Zhou, J., Liu, H. W., Dioxane Bridge Formation during the Biosynthesis of Spectinomycin Involves a Twitch Radical S-Adenosyl Methionine Dehydrogenase That May Have Evolved from an Epimerase. J Am Chem Soc, 2022. 144(22): p. 9910-9919. http://doi.org/10.1021/jacs.2c02676
609.
Mestre, M. R., Gao, L. A., Shah, S. A., Lopez-Beltran, A., Gonzalez-Delgado, A., Martinez-Abarca, F., Iranzo, J., Redrejo-Rodriguez, M., Zhang, F., Toro, N., UG/Abi: a highly diverse family of prokaryotic reverse transcriptases associated with defense functions. Nucleic Acids Res, 2022. 50(11): p. 6084-6101. http://doi.org/10.1093/nar/gkac467
610.
Dill, Z., Li, B., Bridwell-Rabb, J., Purification and structural elucidation of a cobalamin-dependent radical SAM enzyme. Methods Enzymol, 2022. 669: p. 91-116. http://doi.org/10.1016/bs.mie.2021.12.015
611.
Lee, Y. H., Liu, H. W., Studies of GenK and OxsB, two B12-dependent radical SAM enzymes involved in natural product biosynthesis. Methods Enzymol, 2022. 669: p. 71-90. http://doi.org/10.1016/bs.mie.2021.12.014
612.
Sato, S., Kudo, F., Eguchi, T., Characterization of the cobalamin-dependent radical S-adenosyl-l-methionine enzyme C-methyltransferase Fom3 in fosfomycin biosynthesis. Methods Enzymol, 2022. 669: p. 45-70. http://doi.org/10.1016/bs.mie.2021.11.025
613.
Eiamthong, B., Meesawat, P., Wongsatit, T., Jitdee, J., Sangsri, R., Patchsung, M., Aphicho, K., Suraritdechachai, S., Huguenin-Dezot, N., Tang, S., Suginta, W., Paosawatyanyong, B., Babu, M. M., Chin, J. W., Pakotiprapha, D., Bhanthumnavin, W., Uttamapinant, C., Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bio-Functionalization of PET. Angew Chem Int Ed Engl, 2022. http://doi.org/10.1002/anie.202203061
614.
Horch, T., Molloy, E. M., Bredy, F., Haensch, V. G., Scherlach, K., Dunbar, K. L., Franke, J., Hertweck, C., Alternative Benzoxazole Assembly Discovered in Anaerobic Bacteria Provides Access to Privileged Heterocyclic Scaffold. Angew Chem Int Ed Engl, 2022. http://doi.org/10.1002/anie.202205409
615.
Nguyen, N. A., Cong, Y., Hurrell, R. C., Arias, N., Garg, N., Puri, A. W., Schmidt, E. W., Agarwal, V., A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem Biol, 2022. 17(6): p. 1577-1585. http://doi.org/10.1021/acschembio.2c00251
616.
Cao, M., Tran, V. G., Qin, J., Olson, A., Mishra, S., Schultz, J. C., Huang, C., Xie, D., Zhao, H., Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng, 2022. http://doi.org/10.1002/bit.28159
617.
Xiang, D. F., Thoden, J. B., Ghosh, M. K., Holden, H. M., Raushel, F. M., Reaction Mechanism and Three-Dimensional Structure of GDP-d-glycero-alpha-d-manno-heptose 4,6-Dehydratase from Campylobacter jejuni. Biochemistry, 2022. 61(13): p. 1313-1322. http://doi.org/10.1021/acs.biochem.2c00244
618.
Wang, F., Cvirkaite-Krupovic, V., Krupovic, M., Egelman, E. H., Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci U S A, 2022. 119(26): p. e2207037119. http://doi.org/10.1073/pnas.2207037119
619.
Bandarian, V., Journey on the Radical SAM Road as an Accidental Pilgrim. ACS Bio Med Chem Au, 2022. 2(3): p. 187-195. http://doi.org/10.1021/acsbiomedchemau.1c00059
620.
Sugiyama, R., Suarez, A. F. L., Morishita, Y., Nguyen, T. Q. N., Tooh, Y. W., Roslan, M., Lo C. J., Su, Q., Goh, W. Y., Gunawan, G. A., Wong, F. T., Morinaka, B. I., The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs. J Am Chem Soc, 2022. 144(26): p. 11580-11593. http://doi.org/10.1021/jacs.2c00521
621.
Kim, K. H., Park, D., Jia, B., Baek, J. H., Hahn, Y., Jeon, C. O., Identification and Characterization of Major Bile Acid 7alpha-Dehydroxylating Bacteria in the Human Gut. mSystems, 2022. http://doi.org/10.1128/msystems.00455-22
622.
Malit, J. J. L., Leung, H. Y. C., Qian, P. Y., Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Mar Drugs, 2022. 20(6). http://doi.org/10.3390/md20060398
623.
Lu, M., Schneider, D., Daniel, R., Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol, 2022. 13: p. 851969. http://doi.org/10.3389/fmicb.2022.851969
624.
Beliaeva, M. A., Atac, R., Seebeck, F. P., Bacterial Degradation of Ntau-Methylhistidine. ACS Chem Biol, 2022. 17(7): p. 1989-1995. http://doi.org/10.1021/acschembio.2c00437
625.
Sierra, J., McQuinn, R. P., Leon, P., The role of carotenoids as a source of retrograde signals that impact plant development and stress responses. J Exp Bot, 2022. http://doi.org/10.1093/jxb/erac292
626.
Kruse, L. H., Weigle, A. T., Irfan, M., Martinez-Gomez, J., Chobirko, J. D., Schaffer, J. E., Bennett, A. A., Specht, C. D., Jez, J. M., Shukla, D., Moghe, G. D., Orthology-based analysis helps map evolutionary diversification and predict substrate class use of BAHD acyltransferases. Plant J, 2022. http://doi.org/10.1111/tpj.15902
627.
Matsumura, I., Patrick, W. M., Dan Tawfik's Lessons for Protein Engineers about Enzymes Adapting to New Substrates. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00230
628.
Gude, F., Molloy, E. M., Horch, T., Dell, M., Dunbar, K. L., Krabbe, J., Groll, M., Hertweck, C., A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl, 2022. 61(37): p. e202206168. http://doi.org/10.1002/anie.202206168
629.
Wei, Z. W., Niikura, H., Morgan, K. D., Vacariu, C. M., Andersen, R. J., Ryan, K. S., Free Piperazic Acid as a Precursor to Nonribosomal Peptides. J Am Chem Soc, 2022. 144(30): p. 13556-13564. http://doi.org/10.1021/jacs.2c03660
630.
Siddiqui, K. S., Poljak, A., Ertan, H., Bridge, W., The use of isothermal titration calorimetry for the assay of enzyme activity: Application in higher education practical classes. Biochem Mol Biol Educ, 2022. 50(5): p. 519-526. http://doi.org/10.1002/bmb.21657
631.
Lloyd, C. T., Iwig, D. F., Wang, B., Cossu, M., Metcalf, W. W., Boal, A. K., Booker, S. J., Discovery, structure and mechanism of a tetraether lipid synthase. Nature, 2022. 609(7925): p. 197-203. http://doi.org/10.1038/s41586-022-05120-2
632.
Boswinkle, K., McKinney, J., Allen, K. D., Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol, 2022. 204(8): p. e0019722. http://doi.org/10.1128/jb.00197-22
633.
Patteson, J. B., Fortinez, C. M., Putz, A. T., Rodriguez-Rivas, J., Bryant, L. H., 3rd, Adhikari, K., Weigt, M., Schmeing, T. M., Li, B., Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. J Am Chem Soc, 2022. 144(31): p. 14057-14070. http://doi.org/10.1021/jacs.1c13404
634.
Sun, S., Wang, R., Pandelia, M. E., Vibrio cholerae V-cGAP3 Is an HD-GYP Phosphodiesterase with a Metal Tunable Substrate Selectivity. Biochemistry, 2022. 61(17): p. 1801-1809. http://doi.org/10.1021/acs.biochem.2c00269
635.
Reitz, Z. L., Medema, M. H., Genome mining strategies for metallophore discovery. Curr Opin Biotechnol, 2022. 77: p. 102757. http://doi.org/10.1016/j.copbio.2022.102757
636.
Joho, Y., Vongsouthi, V., Spence, M. A., Ton, J., Gomez, C., Tan, L. L., Kaczmarski, J. A., Caputo, A. T., Royan, S., Jackson, C. J., Ardevol, A., Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00323
637.
Schachner, L. F., Soye, B. D., Ro, S., Kenney, G. E., Ives, A. N., Su, T., Goo, Y. A., Jewett, M. C., Rosenzweig, A. C., Kelleher, N. L., Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation. ACS Chem Biol, 2022. http://doi.org/10.1021/acschembio.2c00324
638.
Joho, Y., Vongsouthi, V., Spence, M. A., Ton, J., Gomez, C., Tan, L. L., Kaczmarski, J. A., Caputo, A. T., Royan, S., Jackson, C. J., Ardevol, A., Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity. Biochemistry, 2023. 62(2): p. 437-450. http://doi.org/10.1021/acs.biochem.2c00323
639.
de Crecy-Lagard, V., Amorin d. R., Arighi, C., Babor, J., Bateman, A., Blaby, I., Blaby-Haas, C., Bridge, A. J., Burley, S. K., Cleveland, S., Colwell, L. J., Conesa, A., Dallago, C., Danchin, A., de Waard, A., Deutschbauer, A., Dias, R., Ding, Y., Fang, G., Friedberg, I., Gerlt, J., Goldford, J., Gorelik, M., Gyori, B. M., Henry, C., Hutinet, G., Jaroch, M., Karp, P. D., Kondratova, L., Lu, Z., Marchler-Bauer, A., Martin, M. J., McWhite, C., Moghe, G. D., Monaghan, P., Morgat, A., Mungall, C. J., Natale, D. A., Nelson, W. C., O'Donoghue, S., Orengo, C., O'Toole, K. H., Radivojac, P., Reed, C., Roberts, R. J., Rodionov, D., Rodionova, I. A., Rudolf, J. D., Saleh, L., Sheynkman, G., Thibaud-Nissen, F., Thomas, P. D., Uetz, P., Vallenet, D., Carter, E. W., Weigele, P. R., Wood, V., Wood-Charlson, E. M., Xu, J., A roadmap for the functional annotation of protein families: a community perspective. Database (Oxford), 2022. 2022. http://doi.org/10.1093/database/baac062
640.
Fernandez, R. L., Juntunen, N. D., Brunold, T. C., Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Acc Chem Res, 2022. 55(17): p. 2480-2490. http://doi.org/10.1021/acs.accounts.2c00359
641.
Sarksian, R., van der Donk, W. A., Divergent Evolution of Lanthipeptide Stereochemistry. ACS Chem Biol, 2022. http://doi.org/10.1021/acschembio.2c00492
642.
Zhang, J., Ma, Y., Chen, Q., Yang, M., Feng, D., Zhou, F., Wang, G., Wang, C., Functional Prediction of trans-Prenyltransferases Reveals the Distribution of GFPPSs in Species beyond the Brassicaceae Clade. Int J Mol Sci, 2022. 23(16). http://doi.org/10.3390/ijms23169471
643.
Pimviriyakul, P., Kapaothong, Y., Tangsupatawat, T., Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol, 2022. http://doi.org/10.1007/s12033-022-00556-3
644.
Abraham, N., Schroeter, K. L., Zhu, Y., Chan, J., Evans, N., Kimber, M. S., Carere, J., Zhou, T., Seah, S. Y. K., Structure-function characterization of an aldo-keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Sci Rep, 2022. 12(1): p. 14737. http://doi.org/10.1038/s41598-022-19040-8
645.
Detomasi, T. C., Rico-Ramirez, A. M., Sayler, R. I., Goncalves, A. P., Marletta, M. A., Glass, N. L., A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. Elife, 2022. 11. http://doi.org/10.7554/eLife.80459
646.
Pimviriyakul, P., Kapaothong, Y., Tangsupatawat, T., Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol, 2023. 65(4): p. 556-569. http://doi.org/10.1007/s12033-022-00556-3
647.
Leite, V. M. B., Garrido, L. M., Tangerina, M. M. P., Costa-Lotufo, L. V., Ferreira, M. J. P., Padilla, G., Genome mining of Streptomyces sp. BRB081 reveals the production of the antitumor pyrrolobenzodiazepine sibiromycin. 3 Biotech, 2022. 12(10): p. 249. http://doi.org/10.1007/s13205-022-03305-0
648.
Renata, H., Engineering Catalytically Self-Sufficient P450s. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00336
649.
Liang, H., Lopez, I. J., Sanchez-Hidalgo, M., Genilloud, O., van der Donk, W. A., Mechanistic Studies on Dehydration in Class V Lanthipeptides. ACS Chem Biol, 2022. 17(9): p. 2519-2527. http://doi.org/10.1021/acschembio.2c00458
650.
Renata, H., Engineering Catalytically Self-Sufficient P450s. Biochemistry, 2023. 62(2): p. 253-261. http://doi.org/10.1021/acs.biochem.2c00336
651.
Yuvaraj, I., Chaudhary, S. K., Jeyakanthan, J., Sekar, K., Structure of the hypothetical protein TTHA1873 from Thermus thermophilus. Acta Crystallogr F Struct Biol Commun, 2022. 78(Pt 9): p. 338-346. http://doi.org/10.1107/S2053230X22008457
652.
Ghosh, M. K., Xiang, D. F., Thoden, J. B., Holden, H. M., Raushel, F. M., C3- and C3/C5-Epimerases Required for the Biosynthesis of the Capsular Polysaccharides from Campylobacter jejuni. Biochemistry, 2022. 61(18): p. 2036-2048. http://doi.org/10.1021/acs.biochem.2c00364
653.
Uggowitzer, K. A., Shao, A. R. Q., Habibi, Y., Zhang, Q. E., Thibodeaux, C. J., Exploring the Heterogeneous Structural Dynamics of Class II Lanthipeptide Synthetases with Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Biochemistry, 2022. 61(19): p. 2118-2130. http://doi.org/10.1021/acs.biochem.2c00360
654.
Ke, N., Kumka, J. E., Fang, M., Weaver, B., Burstyn, J. N., Bauer, C. E., RedB, a Member of the CRP/FNR Family, Functions as a Transcriptional Redox Brake. Microbiol Spectr, 2022. http://doi.org/10.1128/spectrum.02353-22
655.
Pei, Z. F., Zhu, L., Sarksian, R., van der Donk, W. A., Nair, S. K., Class V Lanthipeptide Cyclase Directs the Biosynthesis of a Stapled Peptide Natural Product. J Am Chem Soc, 2022. 144(38): p. 17549-17557. http://doi.org/10.1021/jacs.2c06808
656.
Ghosh, M. K., Xiang, D. F., Raushel, F. M., Product Specificity of C4-Reductases in the Biosynthesis of GDP-6-Deoxy-Heptoses during Capsular Polysaccharide Formation in Campylobacter jejuni. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00365
657.
Chen, Y., Jin, S., Zhang, M., Hu, Y., Wu, K. L., Chung, A., Wang, S., Tian, Z., Wang, Y., Wolynes, P. G., Xiao, H., Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun, 2022. 13(1): p. 5434. http://doi.org/10.1038/s41467-022-33111-4
658.
Braccia, D. J., Minabou N. G., Weiss, A., Levy, S., Abeysinghe, S., Jiang, X., Pop, M., Hall, B., Gut Microbiome-Wide Search for Bacterial Azoreductases Reveals Potentially Uncharacterized Azoreductases Encoded in the Human Gut Microbiome. Drug Metab Dispos, 2023. 51(1): p. 142-153. http://doi.org/10.1124/dmd.122.000898
659.
Oberg, N., Precord, T. W., Mitchell, D. A., Gerlt, J. A., RadicalSAM.org: A Resource to Interpret Sequence-Function Space and Discover New Radical SAM Enzyme Chemistry. ACS Bio Med Chem Au, 2022. 2(1): p. 22-35. http://doi.org/10.1021/acsbiomedchemau.1c00048
660.
Lescallette, A. R., Dunn, Z. D., Manning, V. A., Trippe, K. M., Li, B., Biosynthetic Origin of Formylaminooxyvinylglycine and Characterization of the Formyltransferase GvgI. Biochemistry, 2022. 61(19): p. 2159-2164. http://doi.org/10.1021/acs.biochem.2c00374
661.
Clark, K. A., Seyedsayamdost, M. R., Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink. J Am Chem Soc, 2022. http://doi.org/10.1021/jacs.2c06497
662.
Alonso-Reyes, D. G., Galvan, F. S., Irazoqui, J. M., Amadio, A., Tschoeke, D., Thompson, F., Albarracin, V. H., Farias, M. E., Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. Microb Ecol, 2022. http://doi.org/10.1007/s00248-022-02112-7
663.
Alonso-Reyes, D. G., Galvan, F. S., Irazoqui, J. M., Amadio, A., Tschoeke, D., Thompson, F., Albarracin, V. H., Farias, M. E., Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. Microb Ecol, 2023. 86(2): p. 914-932. http://doi.org/10.1007/s00248-022-02112-7
664.
Kaulich, E., McCubbin, P. T. N., Schafer, W. R., Walker, D. S., Physiological insight into the conserved properties of Caenorhabditis elegans acid-sensing degenerin/epithelial sodium channels. J Physiol, 2023. 601(9): p. 1625-1653. http://doi.org/10.1113/JP283238
665.
Riegert, A. S., Narindoshvili, T., Platzer, N. E., Raushel, F. M., Functional Characterization of a HAD Phosphatase Involved in Capsular Polysaccharide Biosynthesis in Campylobacter jejuni. Biochemistry, 2022. http://doi.org/10.1021/acs.biochem.2c00484
666.
Broderick, J. B., Broderick, W. E., Hoffman, B. M., Radical SAM enzymes: Nature's choice for radical reactions. FEBS Lett, 2022. http://doi.org/10.1002/1873-3468.14519
667.
Velilla, J. A., Volpe, M. R., Kenney, G. E., Walsh, R. M., J., Balskus, E. P., Gaudet, R., Structural basis of colibactin activation by the ClbP peptidase. Nat Chem Biol, 2023. 19(2): p. 151-158. http://doi.org/10.1038/s41589-022-01142-z
668.
Lin, L., Lai, Z., Yang, H., Zhang, J., Qi, W., Xie, F., Mao, S., Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. ISME J, 2023. 17(1): p. 172-184. http://doi.org/10.1038/s41396-022-01333-5
669.
Simunovic, V., Grubisic, I., Amino acid (acyl carrier protein) ligase-associated biosynthetic gene clusters reveal unexplored biosynthetic potential. Mol Genet Genomics, 2022. http://doi.org/10.1007/s00438-022-01962-7
670.
Simunovic, V., Grubisic, I., Amino acid (acyl carrier protein) ligase-associated biosynthetic gene clusters reveal unexplored biosynthetic potential. Mol Genet Genomics, 2023. 298(1): p. 49-65. http://doi.org/10.1007/s00438-022-01962-7
671.
Zheng, Y., Nair, S. K., YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nat Chem Biol, 2023. 19(1): p. 111-119. http://doi.org/10.1038/s41589-022-01141-0
672.
Burnim, A. A., Xu, D., Spence, M. A., Jackson, C. J., Ando, N., Analysis of insertions and extensions in the functional evolution of the ribonucleotide reductase family. Protein Sci, 2022. 31(12): p. e4483. http://doi.org/10.1002/pro.4483
673.
Zetzsche, L. E., Chakrabarty, S., Narayan, A. R. H., Development of a P450 Fusion Enzyme for Biaryl Coupling in Yeast. ACS Chem Biol, 2022. 17(11): p. 2986-2992. http://doi.org/10.1021/acschembio.2c00690
674.
Clark, K. A., Covington, B. C., Seyedsayamdost, M. R., Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine. Nat Chem, 2022. 14(12): p. 1390-1398. http://doi.org/10.1038/s41557-022-01063-3
675.
Pasternak, A. R. O., Balunas, M. J., Zechel, D. L., Discovery of 3'-O-beta-Glucosyltubercidin and the Nucleoside Specific Glycosyltransferase AvpGT through Genome Mining. ACS Chem Biol, 2022. 17(12): p. 3507-3514. http://doi.org/10.1021/acschembio.2c00707
676.
Saati-Santamaria, Z., Baroncelli, R., Rivas, R., Garcia-Fraile, P., Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution. Microbiol Spectr, 2022. 10(6): p. e0237022. http://doi.org/10.1128/spectrum.02370-22
677.
Nguyen, T. Q., Nicolet, Y., Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel), 2022. 12(11). http://doi.org/10.3390/life12111732
678.
Mathur, Y., Hazra, A. B., Methylations in vitamin B(12) biosynthesis and catalysis. Curr Opin Struct Biol, 2022. 77: p. 102490. http://doi.org/10.1016/j.sbi.2022.102490
679.
Mann, E., Shekarriz, S., Surette, M. G., Human Gut Metagenomes Encode Diverse GH156 Sialidases. Appl Environ Microbiol, 2022. 88(23): p. e0175522. http://doi.org/10.1128/aem.01755-22
680.
Tsvik, L., Steiner, B., Herzog, P., Haltrich, D., Sutzl, L., Flavin Mononucleotide-Dependent l-Lactate Dehydrogenases: Expanding the Toolbox of Enzymes for l-Lactate Biosensors. ACS Omega, 2022. 7(45): p. 41480-41492. http://doi.org/10.1021/acsomega.2c05257
681.
Kennedy, E. N., Foster, C. A., Barr, S. A., Bourret, R. B., General strategies for using amino acid sequence data to guide biochemical investigation of protein function. Biochem Soc Trans, 2022. 50(6): p. 1847-1858. http://doi.org/10.1042/BST20220849
682.
Zhang, J., Li, T., Hong, Z., Ma, C., Fang, X., Zheng, F., Teng, W., Zhang, C., Si, T., Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae. Angew Chem Int Ed Engl, 2023. 62(4): p. e202214344. http://doi.org/10.1002/anie.202214344
683.
Jordan, M. R., Gonzalez-Gutierrez, G., Trinidad, J. C., Giedroc, D. P., Metal retention and replacement in QueD2 protect queuosine-tRNA biosynthesis in metal-starved Acinetobacter baumannii. Proc Natl Acad Sci U S A, 2022. 119(49): p. e2213630119. http://doi.org/10.1073/pnas.2213630119
684.
Roney, I. J., Rudner, D. Z., Two broadly conserved families of polyprenyl-phosphate transporters. Nature, 2023. 613(7945): p. 729-734. http://doi.org/10.1038/s41586-022-05587-z
685.
Phan, C. S., Morinaka, B. I., A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis. ACS Chem Biol, 2022. 17(12): p. 3284-3289. http://doi.org/10.1021/acschembio.2c00621
686.
Zhang, Y., Gonzalez-Gutierrez, G., Legg, K. A., Walsh, B. J. C., Pis D. C. M., Edmonds, K. A., Giedroc, D. P., Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nat Commun, 2022. 13(1): p. 7586. http://doi.org/10.1038/s41467-022-35277-3
687.
Xiang, D. F., Ghosh, M. K., Riegert, A. S., Thoden, J. B., Holden, H. M., Raushel, F. M., Bifunctional Epimerase/Reductase Enzymes Facilitate the Modulation of 6-Deoxy-Heptoses Found in the Capsular Polysaccharides of Campylobacter jejuni. Biochemistry, 2023. 62(1): p. 134-144. http://doi.org/10.1021/acs.biochem.2c00633
688.
Erickson, E., Gado, J. E., Avilan, L., Bratti, F., Brizendine, R. K., Cox, P. A., Gill, R., Graham, R., Kim, D. J., Konig, G., Michener, W. E., Poudel, S., Ramirez, K. J., Shakespeare, T. J., Zahn, M., Boyd, E. S., Payne, C. M., DuBois, J. L., Pickford, A. R., Beckham, G. T., McGeehan, J. E., Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nat Commun, 2022. 13(1): p. 7850. http://doi.org/10.1038/s41467-022-35237-x
689.
Dhakal, D., Kokkaliari, S., Rubin, G. M., Paul, V. J., Ding, Y., Luesch, H., Biosynthesis of Lyngbyastatins 1 and 3, Cytotoxic Depsipeptides from an Okeania sp. Marine Cyanobacterium. J Nat Prod, 2023. 86(1): p. 85-93. http://doi.org/10.1021/acs.jnatprod.2c00782
690.
Al-Ishaq, R. K., Mazurakova, A., Kubatka, P., Busselberg, D., Flavonoids' Dual Benefits in Gastrointestinal Cancer and Diabetes: A Potential Treatment on the Horizon?. Cancers (Basel), 2022. 14(24). http://doi.org/10.3390/cancers14246073
691.
Zhang, Y., Goto, Y., Suga, H., Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends Biochem Sci, 2023. 48(4): p. 360-374. http://doi.org/10.1016/j.tibs.2022.11.002
692.
Alvarez-Lugo, A., Becerra, A., The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol, 2023. 91(1): p. 76-92. http://doi.org/10.1007/s00239-022-10085-x
693.
Han, Y., Ma, S., Zhang, Q., Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB. Chinese Chemical Letters, 2023. 34(1). http://doi.org/10.1016/j.cclet.2022.06.012
694.
Precord, T. W., Ramesh, S., Dommaraju, S. R., Harris, L. A., Kille, B. L., Mitchell, D. A., Catalytic Site Proximity Profiling for Functional Unification of Sequence-Diverse Radical S-Adenosylmethionine Enzymes. ACS Bio & Med Chem Au, 2023. http://doi.org/10.1021/acsbiomedchemau.2c00085
695.
Joo, H., Eom, H., Cho, Y., Rho, M., Song, W. J., Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Genetics Molecular Biology, 2023. 11. http://doi.org/10.1128/spectrum.02736
696.
Gajdos, M., Wagner, J., Ospina, F., Kohler, A., Engqvist, M. K. M., Hammer, S. C., Chiral Alcohols from Alkenes and Water: Directed Evolution of a Styrene Hydratase. Angew Chem Int Ed Engl, 2023. http://doi.org/10.1002/anie.202215093
697.
Burchill, L., Males, A., Kaur, A., Davies, G. J., Williams, S. J., Structure, Function and Mechanism of N-Glycan Processing Enzymes: endo-α-1,2-Mannanase and endo-α-1,2-Mannosidase. Israel Journal Chemistry, 2023. http://doi.org/10.1002/ijch.202200067
698.
Gopal, M.R., Dickey, R.M., Butler, N. D., Talley, M.R., Nakamura, D.T., Homapatra, A., Watson, M.P., Chen, W., Kunjapur, A. M., Reductive Enzyme Cascades for Valorization of Polyethylene Terephthalate Deconstruction Products. ACS Catal, 2023. 13(7): p. 4778-4789. http://doi.org/10.1021/acscatal.2c06219
699.
Zorn, K., Back, C.R., Barringer, R., Chadimova, V., Manzo-Ruiz. M., Mbatha, S.Z., Mobarec, J.-C., Williams, S.E., vam d. K. M.W., Race. P.R., Willis, C.L., Hayes, M.A., Interrogation of an Enzyme Library Reveals the Catalytic Plasticity of Naturally Evolved [4+2] Cyclases. ChemBioChem, 2023. 24. http://doi.org/10.1002/cbic.202300382
700.
Zmicih, A., Perkins, L.J., Bingman, C. A., Acheson, J.F., Buller, A.R., Multiplexed Assessment of Promiscuous Non-Canonical Amino Acid Synthase Activity in a Pyridoxal Phosphate-Dependent Protein Family. ACS Catal, 2023. 13(17): p. 11644-11655. http://doi.org/10.1021/acscatal.3c02498
701.
Xu, X., Yang, Q., Wang, L., Zheng, J., Gu, Y., Xing, X., Zhou, J., Enzymatic hydrolysis of l-azetidine-2-carboxylate ring opening. Catalysis Science & Technology, 2023. http://doi.org/10.1039/D3CY00366C
702.
Romero, E. O., Saucedo, A. T., Hernandez-Melendez, J.R., Yang, D., Chakrabarty, S., Narayan, A. R. H., Enabling Broader Adoption of Biocatalysis in Organic Chemistry. ACS Bio & Med Chem Au, 2023. http://doi.org/10.1021/jacsau.3c00263
703.
Zhong, G., Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS Bio & Med Chem Au, 2023. http://doi.org/10.1021/acsbiomedchemau.3c00026
704.
Finnigan, W., Lubberink, M., Hepworth, L.J., Citoler, J., Mattey, A.P., Ford, G.J., Sangster, J., Cosgrove, S.C., Zucoloto d. C. B., Heath, R.S., Thorpe. T.W., Yu, Y., Flitsch, S.L., Turner, N.J., RetroBioCat Database: A Platform for Collaborative Curation and Automated Meta-Analysis of Biocatalysis Data. ACS Catal, 2023. 13(17): p. 11771-11780. http://doi.org/10.1021/acscatal.3c01418
705.
Lee, S.H., Chou, A., Natterman, M., Zhu, F., Clomburg, J.M., Paczia, N., Erb, T. J., Gonzalez, R., Identification of 2-Hydroxyacyl-CoA Synthases with High Acyloin Condensation Activity for Orthogonal One-Carbon Bioconversion. ACS Catal, 2023. 13: p. 12007-12020. http://doi.org/10.1021/acscatal.3c02373
706.
Paietta, E.N., Kraberger, S., Custer, J. M., Vargas, K.L., Espy, C., Ehmke, E., Yoder, A.D., Varsani, A., Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA) . Viruses, 2023. 15: p. 1821. http://doi.org/10.3390/v15091821
707.
Knox, H. L., Allen, K. N., Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol, 2023. 72: p. 102246. http://doi.org/10.1016/j.cbpa.2022.102246
708.
Grenade, N. L., Chiriac, D. S., Pasternak, A. R. O., Babulic, J. L., Rowland, B. E., Howe, G. W., Ross, A. C., Discovery of a Tambjamine Gene Cluster in Streptomyces Suggests Convergent Evolution in Bipyrrole Natural Product Biosynthesis. ACS Chem Biol, 2023. 18(2): p. 223-229. http://doi.org/10.1021/acschembio.2c00685
709.
Ozturk, Y., Andrei, A., Blaby-Haas, C. E., Daum, N., Daldal, F., Koch, H. G., Metabolic Sensing of Extracytoplasmic Copper Availability via Translational Control by a Nascent Exported Protein. mBio, 2023. 14(1): p. e0304022. http://doi.org/10.1128/mbio.03040-22
710.
Liu, Z., Rivera, S., Newmister, S. A., Sanders, J. N., Nie, Q., Liu, S., Zhao, F., Ferrara, J. D., Shih, H. W., Patil, S., Xu, W., Miller, M. D., Phillips, G. N., Houk, K. N., Sherman, D. H., Gao, X., An NmrA-like enzyme-catalysed redox-mediated Diels-Alder cycloaddition with anti-selectivity. Nat Chem, 2023. http://doi.org/10.1038/s41557-022-01117-6
711.
Richards, N. G. J., Bearne, S. L., Goto, Y., Parker, E. J., Reactivity and mechanism in chemical and synthetic biology. Philos Trans R Soc Lond B Biol Sci, 2023. 378(1871): p. 20220023. http://doi.org/10.1098/rstb.2022.0023
712.
Fernandez, N. L., Chen, Z., Fuller, D. E. H., van G. L. A., Nye, T. M., Biteen, J. S., Simmons, L. A., DNA Methylation and RNA-DNA Hybrids Regulate the Single-Molecule Localization of a DNA Methyltransferase on the Bacterial Nucleoid. mBio, 2023. 14(1): p. e0318522. http://doi.org/10.1128/mbio.03185-22
713.
Muellers, S. N., Tararina, M. A., Kuzmanovic, U., Galagan, J. E., Allen, K. N., Structural Insights into the Substrate Range of a Bacterial Monoamine Oxidase. Biochemistry, 2023. http://doi.org/10.1021/acs.biochem.2c00540
714.
Thomas, F., Kayser, O., Improving CBCA synthase activity through rational protein design. J Biotechnol, 2023. 363: p. 40-49. http://doi.org/10.1016/j.jbiotec.2023.01.004
715.
Go, M. K., Zhu, T., Lim, K. J. H., Hartono, Y. D., Xue, B., Fan, H., Yew, W. S., Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. Int J Mol Sci, 2023. 24(2). http://doi.org/10.3390/ijms24021259
716.
Shelton, K. E., Mitchell, D. A., Bioinformatic prediction and experimental validation of RiPP recognition elements. Methods Enzymol, 2023. 679: p. 191-233. http://doi.org/10.1016/bs.mie.2022.08.050
717.
Vagstad, A. L., Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Curr Opin Biotechnol, 2023. 80: p. 102891. http://doi.org/10.1016/j.copbio.2023.102891
718.
Cai, J., Wang, T., Deng, X., Tang, L., Liu, L., GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning. BMC Genomics, 2023. 24(1): p. 52. http://doi.org/10.1186/s12864-022-09034-1
719.
Jo, M., Knapp, M., Boggs, D. G., Brimberry, M., Donnan, P. H., Bridwell-Rabb, J., A structure-function analysis of chlorophyllase reveals a mechanism for activity regulation dependent on disulfide bonds. J Biol Chem, 2023. 299(3): p. 102958. http://doi.org/10.1016/j.jbc.2023.102958
720.
Li, Y., Xu, Z., Chen, P., Zuo, C., Chen, L., Yan, W., Jiao, R., Ye, Y., Genome Mining and Heterologous Expression Guided the Discovery of Antimicrobial Naphthocyclinones from Streptomyces eurocidicus CGMCC 4.1086. J Agric Food Chem, 2023. 71(6): p. 2914-2923. http://doi.org/10.1021/acs.jafc.2c06928
721.
Denise, R., Babor, J., Gerlt, J. A., de Crecy-Lagard, V., Pyridoxal 5'-phosphate synthesis and salvage in Bacteria and Archaea: predicting pathway variant distributions and holes. Microb Genom, 2023. 9(2). http://doi.org/10.1099/mgen.0.000926
722.
Kretsch, A. M., Gadgil, M. G., DiCaprio, A. J., Barrett, S. E., Kille, B. L., Si, Y., Zhu, L., Mitchell, D. A., Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element. Biochemistry, 2023. 62(4): p. 956-967. http://doi.org/10.1021/acs.biochem.2c00700
723.
Beltran, L. C., Cvirkaite-Krupovic, V., Miller, J., Wang, F., Kreutzberger, M. A. B., Patkowski, J. B., Costa, T. R. D., Schouten, S., Levental, I., Conticello, V. P., Egelman, E. H., Krupovic, M., Archaeal DNA-import apparatus is homologous to bacterial conjugation machinery. Nat Commun, 2023. 14(1): p. 666. http://doi.org/10.1038/s41467-023-36349-8
724.
Wang, C., Liu, Y., Cui, M., Liu, B., Systematic analysis reveals novel insight into the molecular determinants of function, diversity and evolution of sweet taste receptors T1R2/T1R3 in primates. Front Mol Biosci, 2023. 10: p. 1037966. http://doi.org/10.3389/fmolb.2023.1037966
725.
Reed, A., Ware, T., Li, H., Fernando B. J., Cravatt, B. F., TMEM164 is an acyltransferase that forms ferroptotic C20:4 ether phospholipids. Nat Chem Biol, 2023. 19(3): p. 378-388. http://doi.org/10.1038/s41589-022-01253-7
726.
Martinez-D'Alto, A., Yan, X., Detomasi, T. C., Sayler, R. I., Thomas, W. C., Talbot, N. J., Marletta, M. A., Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proc Natl Acad Sci U S A, 2023. 120(8): p. e2215426120. http://doi.org/10.1073/pnas.2215426120
727.
Harding, C., Larsen, B. B., Otto, H. W., Potticary, A. L., Kraberger, S., Custer, J. M., Suazo, C., Upham, N. S., Worobey, M., Van D. K., Varsani, A., Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology, 2023. 580: p. 98-111. http://doi.org/10.1016/j.virol.2023.02.004
728.
Costa, T., Cassin, E., Moreirinha, C., Mendo, S., Caetano, T. S., Towards the Understanding of the Function of Lanthipeptide and TOMM-Related Genes in Haloferax mediterranei. Biology (Basel), 2023. 12(2). http://doi.org/10.3390/biology12020236
729.
Rutkiewicz, M., Nogues, I., Witek, W., Angelaccio, S., Contestabile, R., Ruszkowski, M., Insights into the substrate specificity, structure, and dynamics of plant histidinol-phosphate aminotransferase (HISN6). Plant Physiol Biochem, 2023. 196: p. 759-773. http://doi.org/10.1016/j.plaphy.2023.02.017
730.
Duan, H., Wang, F., Zhang, C., Dong, Y., Li, H., Xiao, F., Li, W., Elucidation of the Late Steps during Hexacosalactone A Biosynthesis in Streptomyces samsunensis OUCT16-12. Appl Environ Microbiol, 2023. 89(3): p. e0195822. http://doi.org/10.1128/aem.01958-22
731.
Wu, Z. Y., Sun, W., Shen, Y., Pratas, J., Suthers, P. F., Hsieh, P. H., Dwaraknath, S., Rabinowitz, J. D., Maranas, C. D., Shao, Z., Yoshikuni, Y., Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate. Metab Eng Commun, 2023. 16: p. e00220. http://doi.org/10.1016/j.mec.2023.e00220
732.
Cha, L., Paris, J. C., Zanella, B., Spletzer, M., Yao, A., Guo, Y., Chang, W. C., Mechanistic Studies of Aziridine Formation Catalyzed by Mononuclear Non-Heme Iron Enzymes. J Am Chem Soc, 2023. 145(11): p. 6240-6246. http://doi.org/10.1021/jacs.2c12664
733.
Wei, B., Du, A. Q., Ying, T. T., Hu, G. A., Zhou, Z. Y., Yu, W. C., He, J., Yu, Y. L., Wang, H., Xu, X. W., Secondary Metabolic Potential of Kutzneria. J Nat Prod, 2023. http://doi.org/10.1021/acs.jnatprod.3c00007
734.
Foley, M. H., Walker, M. E., Stewart, A. K., O'Flaherty, S., Gentry, E. C., Patel, S., Beaty, V. V., Allen, G., Pan, M., Simpson, J. B., Perkins, C., Vanhoy, M. E., Dougherty, M. K., McGill, S. K., Gulati, A. S., Dorrestein, P. C., Baker, E. S., Redinbo, M. R., Barrangou, R., Theriot, C. M., Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol, 2023. 8(4): p. 611-628. http://doi.org/10.1038/s41564-023-01337-7
735.
Zhao, L., Zhang, W., Wang, Q., Wang, H., Gao, X., Qin, B., Jia, X., You, S., A novel NADH-dependent leucine dehydrogenase for multi-step cascade synthesis of L-phosphinothricin. Enzyme Microb Technol, 2023. 166: p. 110225. http://doi.org/10.1016/j.enzmictec.2023.110225
736.
Bongers, B. J., Sijben, H. J., Hartog, P. B. R., Tarnovskiy, A., I. J. A., Heitman, L. H., van W. G. J. P., Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors. J Chem Inf Model, 2023. 63(6): p. 1745-1755. http://doi.org/10.1021/acs.jcim.2c01645
737.
Lin, J. L., Fang, X., Li, J. X., Chen, Z. W., Wu, W. K., Guo, X. X., Liu, N. J., Huang, J. F., Chen, F. Y., Wang, L. J., Xu, B., Martin, C., Chen, X. Y., Huang, J. Q., Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. Nat Plants, 2023. 9(4): p. 605-615. http://doi.org/10.1038/s41477-023-01376-2
738.
Kunakom, S., Otani, H., Udwary, D. W., Doering, D. T., Mouncey, N. J., Cytochromes P450 involved in bacterial RiPP biosyntheses. J Ind Microbiol Biotechnol, 2023. 50(1). http://doi.org/10.1093/jimb/kuad005
739.
Bernard, C., Li, Y., Lopez, P., Bapteste, E., Large-Scale Identification of Known and Novel RRNPP Quorum-Sensing Systems by RRNPP_Detector Captures Novel Features of Bacterial, Plasmidic, and Viral Coevolution. Mol Biol Evol, 2023. 40(4). http://doi.org/10.1093/molbev/msad062
740.
Li, Z., Xu, B., Kojasoy, V., Ortega, T., Adpressa, D. A., Ning, W., Wei, X., Liu, J., Tantillo, D. J., Loesgen, S., Rudolf, J. D., First trans-eunicellane terpene synthase in bacteria. Chem, 2023. 9(3): p. 698-708. http://doi.org/10.1016/j.chempr.2022.12.006
741.
Ghosh, M. K., Xiang, D. F., Raushel, F. M., Biosynthesis of 3,6-Dideoxy-heptoses for the Capsular Polysaccharides of Campylobacter jejuni. Biochemistry, 2023. 62(7): p. 1287-1297. http://doi.org/10.1021/acs.biochem.3c00012
742.
Beliaeva, M. A., Wilmanns, M., Zimmermann, M., Decipher enzymes from human microbiota for drug discovery and development. Curr Opin Struct Biol, 2023. 80: p. 102567. http://doi.org/10.1016/j.sbi.2023.102567
743.
Baltoumas, F. A., Karatzas, E., Paez-Espino, D., Venetsianou, N. K., Aplakidou, E., Oulas, A., Finn, R. D., Ovchinnikov, S., Pafilis, E., Kyrpides, N. C., Pavlopoulos, G. A., Exploring microbial functional biodiversity at the protein family level-From metagenomic sequence reads to annotated protein clusters. Front Bioinform, 2023. 3: p. 1157956. http://doi.org/10.3389/fbinf.2023.1157956
744.
Runda, M. E., de Kok, N. A. W., Schmidt, S., Rieske Oxygenases and other Ferredoxin-dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem, 2023. http://doi.org/10.1002/cbic.202300078
745.
Han, H., Yu, C., Qi, J., Wang, P., Zhao, P., Gong, W., Xie, C., Xia, X., Liu, C., High-efficient production of mushroom polyketide compounds in a platform host Aspergillus oryzae. Microb Cell Fact, 2023. 22(1): p. 60. http://doi.org/10.1186/s12934-023-02071-9
746.
Kaur, A., Scott, N. E., Herisse, M., Goddard-Borger, E. D., Pidot, S., Williams, S. J., Identification of levoglucosan degradation pathways in bacteria and sequence similarity network analysis. Arch Microbiol, 2023. 205(4): p. 155. http://doi.org/10.1007/s00203-023-03506-y
747.
Lim, L. R., Wong, G., Go, M. K., Yew, W. S., Increasing lysergic acid levels for ergot alkaloid biosynthesis: Directing catalysis via the F-G loop of Clavine oxidases. Front Microbiol, 2023. 14: p. 1150937. http://doi.org/10.3389/fmicb.2023.1150937
748.
Bellas, C., Hackl, T., Plakolb, M. S., Koslova, A., Fischer, M. G., Sommaruga, R., Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. Proc Natl Acad Sci U S A, 2023. 120(16): p. e2300465120. http://doi.org/10.1073/pnas.2300465120
749.
Liang, H., Song, Z. M., Zhong, Z., Zhang, D., Yang, W., Zhou, L., Older, E. A., Li, J., Wang, H., Zeng, Z., Li, Y. X., Genomic and metabolic analyses reveal antagonistic lanthipeptides in archaea. Microbiome, 2023. 11(1): p. 74. http://doi.org/10.1186/s40168-023-01521-1
750.
Song, K., Li, W., Zhao, Z., Li, H., Liu, Y., Zhao, G., He, H. Y., Du, Y. L., Heterologous Reconstitution of Toxoflavin Biosynthesis Reveals Key Pathway Intermediates and a Cofactor-Independent Oxidase. Org Lett, 2023. 25(16): p. 2918-2922. http://doi.org/10.1021/acs.orglett.3c01000
751.
Liu, J., Liu, J., Li, M., Zhou, L., Kong, W., Zhang, H., Jin, P., Lu, F., Lin, G., Shi, L., Division of developmental phases of freshwater leech Whitmania pigra and key genes related to neurogenesis revealed by whole genome and transcriptome analysis. BMC Genomics, 2023. 24(1): p. 203. http://doi.org/10.1186/s12864-023-09286-5
752.
Li, D., Wang, W., Xu, K., Li, J., Long, B., Li, Z., Tan, G., Yu, X., Elucidation of a Dearomatization Route in the Biosynthesis of Oxysporidinone Involving a TenA-like Cytochrome P450 Enzyme. Angew Chem Int Ed Engl, 2023. 62(25): p. e202301976. http://doi.org/10.1002/anie.202301976
753.
Rao, L., Yuan, G. Y., Chen, X. Y., Ran, J. L., Zou, Y., Reshaping the Diversity of Oxidized Polyquinane Sesquiterpenoids by Cytochrome P450s. Org Lett, 2023. 25(18): p. 3276-3280. http://doi.org/10.1021/acs.orglett.3c01024
754.
Simpson, J. B., Sekela, J. J., Carry, B. S., Beaty, V., Patel, S., Redinbo, M. R., Diverse but desolate landscape of gut microbial azoreductases: A rationale for idiopathic IBD drug response. Gut Microbes, 2023. 15(1): p. 2203963. http://doi.org/10.1080/19490976.2023.2203963
755.
Rzoska-Smith, E., Stelzer, R., Monterio, M., Cary, S. C., Williamson, A., DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol, 2023. 14: p. 1156817. http://doi.org/10.3389/fmicb.2023.1156817
756.
Zheng, Y., Young, N. D., Song, J., Chang, B. C. H., Gasser, R. B., An informatic workflow for the enhanced annotation of excretory/secretory proteins of Haemonchus contortus. Comput Struct Biotechnol J, 2023. 21: p. 2696-2704. http://doi.org/10.1016/j.csbj.2023.03.025
757.
Dent, M. R., Weaver, B. R., Roberts, M. G., Burstyn, J. N., Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol, 2023. 205(5): p. e0033222. http://doi.org/10.1128/jb.00332-22
758.
Roney, I. J., Rudner, D. Z., The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes. Proc Natl Acad Sci U S A, 2023. 120(20): p. e2301979120. http://doi.org/10.1073/pnas.2301979120
759.
Wang, X., Wang, Z., Dong, Z., Yan, Y., Zhang, Y., Huo, L., Deciphering the Biosynthesis of Novel Class I Lanthipeptides from Marine Pseudoalteromonas Reveals a Dehydratase PsfB with Dethiolation Activity. ACS Chem Biol, 2023. 18(5): p. 1218-1227. http://doi.org/10.1021/acschembio.3c00135
760.
Zhai, L., Chou, J. C., Oo, H., Dassama, L. M. K., Structures and Mechanisms of a Novel Bacterial Transport System for Fatty Acids. Chembiochem, 2023. http://doi.org/10.1002/cbic.202300156
761.
Yang, R., Feng, J., Xiang, H., Cheng, B., Shao, L. D., Li, Y. P., Wang, H., Hu, Q. F., Xiao, W. L., Matsuda, Y., Wang, W. G., Ketoreductase Domain-Catalyzed Polyketide Chain Release in Fungal Alkyl Salicylaldehyde Biosynthesis. J Am Chem Soc, 2023. 145(20): p. 11293-11300. http://doi.org/10.1021/jacs.3c02011
762.
Shirakawa, K. T., Sala, F. A., Miyachiro, M. M., Job, V., Trindade, D. M., Dessen, A., Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A, 2023. 120(21): p. e2219540120. http://doi.org/10.1073/pnas.2219540120
763.
Tian, J., Garcia, A. A., Donnan, P. H., Bridwell-Rabb, J., Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry, 2023. http://doi.org/10.1021/acs.biochem.3c00150
764.
Butler, N. D., Sen, S., Brown, L. B., Lin, M., Kunjapur, A. M., A platform for distributed production of synthetic nitrated proteins in live bacteria. Nat Chem Biol, 2023. http://doi.org/10.1038/s41589-023-01338-x
765.
Begeman, A., Babaian, A., Lewis, S. C., Metatranscriptomic analysis uncovers prevalent viral ORFs compatible with mitochondrial translation. mSystems, 2023. http://doi.org/10.1128/msystems.01002-22
766.
Barbour, A., Smith, L., Oveisi, M., Williams, M., Huang, R. C., Marks, C., Fine, N., Sun, C., Younesi, F., Zargaran, S., Orugunty, R., Horvath, T. D., Haidacher, S. J., Haag, A. M., Sabharwal, A., Hinz, B., Glogauer, M., Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc Natl Acad Sci U S A, 2023. 120(22): p. e2219392120. http://doi.org/10.1073/pnas.2219392120
767.
Li, Y., Ma, Y., Xia, Y., Zhang, T., Sun, S., Gao, J., Yao, H., Wang, H., Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks. Nat Commun, 2023. 14(1): p. 2944. http://doi.org/10.1038/s41467-023-38517-2
768.
Ayikpoe, R. S., Zhu, L., Chen, J. Y., Ting, C. P., van der Donk, W. A., Macrocyclization and Backbone Rearrangement During RiPP Biosynthesis by a SAM-Dependent Domain-of-Unknown-Function 692. ACS Cent Sci, 2023. 9(5): p. 1008-1018. http://doi.org/10.1021/acscentsci.3c00160
769.
Zhou, Y., Wei, Y., Jiang, L., Zhang, Y., Jiao, X., A (S)-3-Hydroxybutyrate Dehydrogenase Belonging to the 3-Hydroxyacyl-CoA Dehydrogenase Family Facilitates Hydroxyacid Degradation in Anaerobic Bacteria. Appl Environ Microbiol, 2023. http://doi.org/10.1128/aem.00366-23
770.
Mattocks, J. A., Jung, J. J., Lin, C. Y., Dong, Z., Yennawar, N. H., Featherston, E. R., Kang-Yun, C. S., Hamilton, T. A., Park, D. M., Boal, A. K., Cotruvo, J. A., J., Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 2023. 618(7963): p. 87-93. http://doi.org/10.1038/s41586-023-05945-5
771.
Lund, M. C., Larsen, B. B., Rowsey, D. M., Otto, H. W., Gryseels, S., Kraberger, S., Custer, J. M., Steger, L., Yule, K. M., Harris, R. E., Worobey, M., Van D. K., Upham, N. S., Varsani, A., Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology, 2023. 585: p. 42-60. http://doi.org/10.1016/j.virol.2023.05.006
772.
Singh, H. W., Creamer, K. E., Chase, A. B., Klau, L. J., Podell, S., Jensen, P. R., Metagenomic data reveals type I polyketide synthase distributions across biomes. mSystems, 2023. 8(3): p. e0001223. http://doi.org/10.1128/msystems.00012-23
773.
Schultz, R. L., Sabat, G., Fox, B. G., Brunold, T. C., A Single DNA Point Mutation Leads to the Formation of a Cysteine-Tyrosine Crosslink in the Cysteine Dioxygenase from Bacillus subtilis. Biochemistry, 2023. 62(12): p. 1964-1975. http://doi.org/10.1021/acs.biochem.3c00083
774.
Xia, T., Teng, K., Liu, Y., Guo, Y., Huang, F., Tahir, M., Wang, T., Zhong, J., A Novel Two-Component Bacteriocin, Acidicin P, and Its Key Residues for Inhibiting Listeria monocytogenes by Targeting the Cell Membrane. Microbiol Spectr, 2023. http://doi.org/10.1128/spectrum.05210-22
775.
Jodts, R. J., Wittkop, M., Ho, M. B., Broderick, W. E., Broderick, J. B., Hoffman, B. M., Mosquera, M. A., Computational Description of Alkylated Iron-Sulfur Organometallic Clusters. J Am Chem Soc, 2023. 145(25): p. 13879-13887. http://doi.org/10.1021/jacs.3c03062
776.
Schultz, B. J., Snow, E. D., Walker, S., Mechanism of D-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers. Nat Microbiol, 2023. 8(7): p. 1318-1329. http://doi.org/10.1038/s41564-023-01411-0
777.
Tong, Y., Wu, X., Liu, Y., Chen, H., Zhou, Y., Jiang, L., Li, M., Zhao, S., Zhang, Y., Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage. Nat Microbiol, 2023. 8(7): p. 1330-1338. http://doi.org/10.1038/s41564-023-01410-1
778.
Kremer, K., Meier, D., Theis, L., Miller, S., Rost-Nasshan, A., Naing, Y. T., Zarzycki, J., Paczia, N., Serrania, J., Blumenkamp, P., Goesmann, A., Becker, A., Thanbichler, M., Hochberg, G. K. A., Carter, M. S., Erb, T. J., Functional Degeneracy in Paracoccus denitrificans Pd1222 Is Coordinated via RamB, Which Links Expression of the Glyoxylate Cycle to Activity of the Ethylmalonyl-CoA Pathway. Appl Environ Microbiol, 2023. 89(7): p. e0023823. http://doi.org/10.1128/aem.00238-23
779.
Grigg, J. C., Copp, J. N., Krekhno, J. M. C., Liu, J., Ibrahimova, A., Eltis, L. D., Deciphering the biosynthesis of a novel lipid in Mycobacterium tuberculosis expands the known roles of the nitroreductase superfamily. J Biol Chem, 2023. 299(7): p. 104924. http://doi.org/10.1016/j.jbc.2023.104924
780.
Mao, Y., Zhang, W., Fu, Z., Liu, Y., Chen, L., Lian, X., Zhuo, D., Wu, J., Zheng, M., Liao, C., Versatile Biocatalytic C(sp(3) )-H Oxyfunctionalization for the Site- Selective and Stereodivergent Synthesis of alpha- and beta-Hydroxy Acids. Angew Chem Int Ed Engl, 2023. http://doi.org/10.1002/anie.202305250
781.
Zhang, L., Laurent, C., Schwaiger, L., Wang, L., Ma, S., Ludwig, R., Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. ACS Catal, 2023. 13(12): p. 8195-8205. http://doi.org/10.1021/acscatal.3c02116
782.
Zhou, Y., Wei, Y., Jiang, L., Jiao, X., Zhang, Y., Anaerobic phloroglucinol degradation by Clostridium scatologenes. mBio, 2023. http://doi.org/10.1128/mbio.01099-23
783.
Li, Y., Ding, X., Du, Y., Li, Y., Ren, W., Lu, Y., Shi, Y., Sun, H., Wang, L., Li, Y., Li, X., Xie, Y., Hong, B., Genome-Directed Discovery of Bicyclic Cinnamoyl-Containing Nonribosomal Peptides with Anticoronaviral Activity from Streptomyces griseus. Org Lett, 2023. 25(26): p. 4874-4879. http://doi.org/10.1021/acs.orglett.3c01683
784.
Du, Y., Thanapipatsiri, A., Yokoyama, K., Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products. Chembiochem, 2023. http://doi.org/10.1002/cbic.202300342
785.
Oberg, N., Zallot, R., Gerlt, J. A., EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) Web Resource for Genomic Enzymology Tools. J Mol Biol, 2023. 435(14): p. 168018. http://doi.org/10.1016/j.jmb.2023.168018
786.
Liu, J., Lu, J., Zhang, C., Zhou, Q., Jamieson, C. S., Shang, C., Houk, K. N., Zhou, J., Hu, Y., Tandem intermolecular [4 + 2] cycloadditions are catalysed by glycosylated enzymes for natural product biosynthesis. Nat Chem, 2023. http://doi.org/10.1038/s41557-023-01260-8
787.
Hammerstad, M., Rugtveit, A. K., Dahlen, S., Andersen, H. K., Hersleth, H. P., Functional Diversity of Homologous Oxidoreductases-Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction. Antioxidants (Basel), 2023. 12(6). http://doi.org/10.3390/antiox12061224
788.
Wilson, J., Cui, J., Nakao, T., Kwok, H., Zhang, Y., Kayrouz, C. M., Pham, T. M., Roodhouse, H., Ju, K. S., Discovery of Antimicrobial Phosphonopeptide Natural Products from Bacillus velezensis by Genome Mining. Appl Environ Microbiol, 2023. 89(6): p. e0033823. http://doi.org/10.1128/aem.00338-23
789.
Chu, R., Wei, Y., Liu, J., Li, B., Zhang, J., Zhou, Y., Du, Y., Zhang, Y., A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Appl Environ Microbiol, 2023. 89(7): p. e0061723. http://doi.org/10.1128/aem.00617-23
790.
Liu, X., Wei, Y., Zhang, J., Zhou, Y., Du, Y., Zhang, Y., Isethionate is an intermediate in the degradation of sulfoacetate by the human gut pathobiont Bilophila wadsworthia. J Biol Chem, 2023. http://doi.org/10.1016/j.jbc.2023.105010
791.
Wu, T., Guo, S. Z., Zhu, H. Z., Yan, L., Liu, Z. P., Li, D. F., Jiang, C. Y., Corvini, P. F., Shen, X. H., Liu, S. J., The sulfonamide-resistance dihydropteroate synthase gene is crucial for efficient biodegradation of sulfamethoxazole by Paenarthrobacter species. Appl Microbiol Biotechnol, 2023. http://doi.org/10.1007/s00253-023-12679-x
792.
Li, A., Sheng, Y., Cui, H., Wang, M., Wu, L., Song, Y., Yang, R., Li, X., Huang, H., Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling. Nat Commun, 2023. 14(1): p. 4169. http://doi.org/10.1038/s41467-023-39929-w
793.
Bohringer, N., Kramer, J. C., de la M. E., Padva, L., Wuisan, Z. G., Liu, Y., Kurz, M., Marner, M., Nguyen, H., Amara, P., Yokoyama, K., Nicolet, Y., Mettal, U., Schaberle, T. F., Genome- and metabolome-guided discovery of marine BamA inhibitors revealed a dedicated darobactin halogenase. Cell Chem Biol, 2023. http://doi.org/10.1016/j.chembiol.2023.06.011
794.
Bunyat-Zada, A. R., Ross, A. C., Highlights of bioinformatic tools and methods for validating bioinformatics derived hypotheses for microbial natural products research. Curr Opin Chem Biol, 2023. 76: p. 102367. http://doi.org/10.1016/j.cbpa.2023.102367
795.
Jia, H., Dantuluri, S., Margulies, S., Smith, V., Lever, R., Allers, T., Koh, J., Chen, S., Maupin-Furlow, J. A., RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio, 2023. http://doi.org/10.1128/mbio.00852-23
796.
Qin, Y., Li, Q., Fan, L., Ning, X., Wei, X., You, C., Biomanufacturing by In Vitro Biotransformation (ivBT) Using Purified Cascade Multi-enzymes. Adv Biochem Eng Biotechnol, 2023. http://doi.org/10.1007/10_2023_231
797.
Wang, X., Chen, X., Wang, Z. J., Zhuang, M., Zhong, L., Fu, C., Garcia, R., Muller, R., Zhang, Y., Yan, J., Wu, D., Huo, L., Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity. J Am Chem Soc, 2023. http://doi.org/10.1021/jacs.3c06014
798.
Fernandez-Cantos, M. V., Garcia-Morena, D., Yi, Y., Liang, L., Gomez-Vazquez, E., Kuipers, O. P., Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products. Front Microbiol, 2023. 14: p. 1219272. http://doi.org/10.3389/fmicb.2023.1219272
799.
Powell, M. M., Rao, G., Britt, R. D., Rittle, J., Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. J Am Chem Soc, 2023. 145(30): p. 16526-16537. http://doi.org/10.1021/jacs.3c03419
800.
Back, D., O'Donnell, T. J., Axt, K. K., Gurr, J. R., Vanegas, J. M., Williams, P. G., Philmus, B., Identification, Heterologous Expression, and Characterization of the Tolypodiol Biosynthetic Gene Cluster through an Integrated Approach. ACS Chem Biol, 2023. http://doi.org/10.1021/acschembio.3c00225
801.
Erwin, K., Moreno, R. Y., Baas, B. J., Zhang, Y. J., Whitman, C. P., Introduction of Asymmetry in the Fused 4-Oxalocrotonate Tautomerases. Biochemistry, 2023. http://doi.org/10.1021/acs.biochem.3c00180
802.
Baranowski, B., Pawlowski, K., Protein family neighborhood analyzer-ProFaNA. PeerJ, 2023. 11: p. e15715. http://doi.org/10.7717/peerj.15715
803.
Daniel-Ivad, P. G., Van L. S., Ryan, K. S., Structure of the Oxygen, Pyridoxal Phosphate-Dependent Capuramycin Biosynthetic Protein Cap15. Biochemistry, 2023. http://doi.org/10.1021/acs.biochem.3c00216
804.
Tripathi, P., Mousa, J. J., Guntaka, N. S., Bruner, S. D., Structural basis of the amidase ClbL central to the biosynthesis of the genotoxin colibactin. Acta Crystallogr D Struct Biol, 2023. 79(Pt 9): p. 830-836. http://doi.org/10.1107/S2059798323005703
805.
Wertz, A. E., Teptarakulkarn, P., Stein, R. E., Moore, P. J., Shafaat, H. S., Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform. Biochemistry, 2023. http://doi.org/10.1021/acs.biochem.3c00249
806.
Hornung, B. V. H., Terrapon, N., An objective criterion to evaluate sequence-similarity networks helps in dividing the protein family sequence space. PLoS Comput Biol, 2023. 19(8): p. e1010881. http://doi.org/10.1371/journal.pcbi.1010881
807.
Lukowski, A. L., Hubert, F. M., Ngo, T. E., Avalon, N. E., Gerwick, W. H., Moore, B. S., Enzymatic Halogenation of Terminal Alkynes. J Am Chem Soc, 2023. 145(34): p. 18716-18721. http://doi.org/10.1021/jacs.3c05750
808.
Lim, Y., Seo, J. H., Giovannoni, S. J., Kang, I., Cho, J. C., Cultivation of marine bacteria of the SAR202 clade. Nat Commun, 2023. 14(1): p. 5098. http://doi.org/10.1038/s41467-023-40726-8
809.
Anantharaman, S., Guercio, D., Mendoza, A. G., Withorn, J. M., Boon, E. M., Negative regulation of biofilm formation by nitric oxide sensing proteins. Biochem Soc Trans, 2023. 51(4): p. 1447-1458. http://doi.org/10.1042/BST20220845
810.
Gering, H. E., Li, X., Tang, H., Swartz, P. D., Chang, W. C., Makris, T. M., A Ferric-Superoxide Intermediate Initiates P450-Catalyzed Cyclic Dipeptide Dimerization. J Am Chem Soc, 2023. http://doi.org/10.1021/jacs.3c04542
811.
Bains, R. K., Nasseri, S. A., Liu, F., Wardman, J. F., Rahfeld, P., Withers, S. G., Characterization of a New Family of 6-Sulfo-N-Acetylglucosaminidases. J Biol Chem, 2023. http://doi.org/10.1016/j.jbc.2023.105214
812.
Rassbach, J., Hilsberg, N., Haensch, V. G., Dorner, S., Gressler, J., Sonnabend, R., Semm, C., Voigt, K., Hertweck, C., Gressler, M., Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales. Fungal Biol Biotechnol, 2023. 10(1): p. 19. http://doi.org/10.1186/s40694-023-00166-x
813.
Tian, J., Boggs, D. G., Donnan, P. H., Barroso, G. T., Garcia, A. A., Dowling, D. P., Buss, J. A., Bridwell-Rabb, J., The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry. J Biol Chem, 2023. 299(10): p. 105222. http://doi.org/10.1016/j.jbc.2023.105222
814.
Jones, M. A., Butler, N. D., Anderson, S. R., Wirt, S. A., Govil, I., Lyu, X., Fang, Y., Kunjapur, A. M., Discovery of L-threonine transaldolases for enhanced biosynthesis of beta-hydroxylated amino acids. Commun Biol, 2023. 6(1): p. 929. http://doi.org/10.1038/s42003-023-05293-0
815.
Wang, H., Han, Y., Wang, X., Jia, Y., Zhang, Y., Muller, R., Huo, L., Genome Mining of Myxopeptins Reveals a Class of Lanthipeptide-Derived Linear Dehydroamino Acid-Containing Peptides from Myxococcus sp. MCy9171. ACS Chem Biol, 2023. http://doi.org/10.1021/acschembio.3c00265
816.
Vogel, U., Da C. M., Alvarez Q. C. J., Stragier, R., Joosten, H. J., Beerens, K., Desmet, T., The conversion of UDP-Glc to UDP-Man: In Silico and Biochemical Exploration to Improve the Catalytic Efficiency of CDP-Tyvelose C2-Epimerases. Chembiochem, 2023. http://doi.org/10.1002/cbic.202300549
817.
Sun, W., Xu, Y., Liang, Y., Yu, Q., Gao, H., A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Appl Environ Microbiol, 2023. http://doi.org/10.1128/aem.01108-23
818.
Ye, Z., Wei, Y., Jiang, L., Zhang, Y., Oxygenolytic sulfoquinovose degradation by an iron-dependent alkanesulfonate dioxygenase. iScience, 2023. 26(10): p. 107803. http://doi.org/10.1016/j.isci.2023.107803
819.
Li, L., Zhou, L., Jiang, C., Liu, Z., Meng, D., Luo, F., He, Q., Yin, H., AI-driven pan-proteome analyses reveal insights into the biohydrometallurgical properties of Acidithiobacillia. Front Microbiol, 2023. 14: p. 1243987. http://doi.org/10.3389/fmicb.2023.1243987
820.
Chua, W., Marsh, C. O., Poh, S. E., Koh, W. L., Ying L. M. L., Koh, L. F., Emily T. X. Z., See, P., Ser, Z., Wang, S. M., Sobota, R. M., Dawson, T. L., J., Yew, Y. W., Thng, S., O' D. A., Oon, H. H., Common, J. E., Li, H., A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin. Biochimie, 2023. http://doi.org/10.1016/j.biochi.2023.09.023
821.
Nam, H., An, J. S., Lee, J., Yun, Y., Lee, H., Park, H., Jung, Y., Oh, K. B., Oh, D. C., Kim, S., Exploring the Diverse Landscape of Biaryl-Containing Peptides Generated by Cytochrome P450 Macrocyclases. J Am Chem Soc, 2023. http://doi.org/10.1021/jacs.3c07140
822.
Patel, K. D., Gulick, A. M., Structural and functional insights into delta-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Commun Biol, 2023. 6(1): p. 982. http://doi.org/10.1038/s42003-023-05362-4
823.
Li, L., Liu, Z., Meng, D., Liu, Y., Liu, T., Jiang, C., Yin, H., Sequence similarity network and protein structure prediction offer insights into the evolution of microbial pathways for ferrous iron oxidation. mSystems, 2023. http://doi.org/10.1128/msystems.00720-23
824.
Jia, K., Wang, J., Zhai, R., Du, Y., Kira, J., Wu, C., Qian, P. Y., Zhang, W., Abi Family Protein, DidK, Is Involved in the Maturation of Anticancer Depsipeptide, Didemnin B. ACS Chem Biol, 2023. http://doi.org/10.1021/acschembio.3c00393
825.
Pimviriyakul, P., Buttranon, S., Soithongcharoen, S., Supawatkon, C., Disayabootr, K., Watthaisong, P., Tinikul, R., Jaruwat, A., Chaiyen, P., Chitnumsub, P., Maenpuen, S., Structure and biochemical characterization of an extradiol 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Acinetobacter baumannii. Arch Biochem Biophys, 2023. 747: p. 109768. http://doi.org/10.1016/j.abb.2023.109768
826.
Todorinova, M., Beld, J., Jaremko, K. L., A broad inhibitor of acyl-acyl carrier protein synthetases. Biochem Biophys Rep, 2023. 35: p. 101549. http://doi.org/10.1016/j.bbrep.2023.101549
827.
Ma, S., Xi, W., Wang, S., Chen, H., Guo, S., Mo, T., Chen, W., Deng, Z., Chen, F., Ding, W., Zhang, Q., Substrate-Controlled Catalysis in the Ether Cross-Link-Forming Radical SAM Enzymes. J Am Chem Soc, 2023. http://doi.org/10.1021/jacs.3c04355
828.
Qi, X., Ji, M., Yin, C. F., Zhou, N. Y., Liu, Y., Glacier as a source of novel polyethylene terephthalate hydrolases. Environ Microbiol, 2023. http://doi.org/10.1111/1462-2920.16516
829.
Guo, M. X., Zhang, M. M., Sun, K., Cui, J. J., Liu, Y. C., Gao, K., Dong, S. H., Luo, S., Genome Mining of Linaridins Provides Insights into the Widely Distributed LinC Oxidoreductases. J Nat Prod, 2023. http://doi.org/10.1021/acs.jnatprod.3c00527
830.
Lachowicz, J., Lee, J., Sagatova, A., Jew, K., Grove, T. L., The new epoch of structural insights into radical SAM enzymology. Curr Opin Struct Biol, 2023. 83: p. 102720. http://doi.org/10.1016/j.sbi.2023.102720
831.
Khalfaoui-Hassani, B., Blaby-Haas, C. E., Verissimo, A., Daldal, F., The Escherichia coli MFS-type transporter genes yhjE, ydiM, and yfcJ are required to produce an active bo3 quinol oxidase. PLoS One, 2023. 18(10): p. e0293015. http://doi.org/10.1371/journal.pone.0293015
832.
Xi, H., Nie, X., Gao, F., Liang, X., Li, H., Zhou, H., Cai, Y., Yang, C., A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. Sci Adv, 2023. 9(43): p. eadj9075. http://doi.org/10.1126/sciadv.adj9075
833.
Detomasi, T. C., Batka, A. E., Valastyan, J. S., Hydorn, M. A., Craik, C. S., Bassler, B. L., Marletta, M. A., Proteases influence colony aggregation behavior in Vibrio cholerae. J Biol Chem, 2023. http://doi.org/10.1016/j.jbc.2023.105386

Click here to contact us for help, reporting issues, or suggestions.